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Motivation: Beyond Expected Return Policy Optimization Intermediate Risk Preferences: An Example
In safety-critical domains (finance, Probability We leverage the dual representation of SRMs, which separates the optimization into two alter- = Assume the optimal policy is for: T qr V2 €08 Qs 1
- i T nating steps:
robotics, healthcare, th), maximizing o g SLEp 1 o(G) = 0.6 - CVaRg 95(G) + 0.4 - CVaR s(G) cn 7 4 195 &
the expected return is insufficient as ' max SRM 4(G™) = max | max E [A(G™)] +/ ﬁ(¢(u)>du . | e o :_.25 .
it ignores rare but catastrophic Worst-cace m ¢ hey \ 0 At time ¢, let sy =5 and ¢; = 0.8 % L
outcomes. Random return Z7 "Ny =12 = 025-65 =Fg ((12-5)/0.8) =0.3 = 2o% 1221258
: . €0-25 = 0.3/0.25 = 1.2 35% 20 O 1.25 14
expectation maxy E[Z7] 1. Inner Optimization: For a fixed function h, solve a distributional RL problem on an MDP with " \g=39 = 08- 59-8 = F,((39-5)/0.8) =1.0 = 0 n
Rick-Sensiti RI7_T° N . < an extended state space (X x S x C) to find the optimal policy. The distributional Bellman €08 Z1.0/0.8 =1.25 0% 270 12517/
Isk-Sensitive RL: Maximize a ris | > Return operator and the greedy action are: . . B 65% 30 O 1.25 21
measure of the return max, p(ZW) ExpeCted FGturﬂ Q’]T 5 . Normallzmg factor: g =006-1.24+04-1.25=1.22 759, 39 195 9t
Gri1,4(,8,¢,0) = R(z, a) + VGk,l(x/v s’ ak,l(xla s’ ) = Therefore, at time ¢, the policy is effectively optimized for: 85% 39 O O 28
_ _ _ _ D 0.6-1.2 0.4-1.25
Desirable Properties of a Risk Measure AG p(2, 8,¢) = argmax Bl (s +cG(@, 5, ¢,a)) pelGr) = == - CVaRg3(Gy) + —— = CVaRy9(GY) 706400 0 3
The choice of risk measure 0 is critical. An ideal objective should possess: 2. Outer Optimization: Use the learned return distribution G to update the function h in _ ] ]
closed-form, refining the objective. Experiment: Mean-Reversion Trading
= Generality: Expressiveness to capture diverse risk preferences beyond a single type (e.g., 1 1 _
more than just CVaR). h,z(z) = / Fz_l(a) + — (z — Fz_l(a)) p(da) We evaluate QR-SRM in an algorithmic trading task where the asset price follows an Ornstein-
: : , : : : . : 0 . Uhlenbeck process. The agent learns a policy to buy or Tsell assets to maximize a risk-adjusted
= Time-Consistency: Ensures that an optimal plan remains optimal at all future decision points, . We tect oty of oy rick b 4 CVaR includine:
avoiding self-contradictory actions. A policy 7* = (aj, . .., k) is time-consistent if, for any Convergence: Suppose J(m, h) = E[h(G™)]| + fol h(é(u))du. If 7, ; denotes the greedy policy FERLITI VVE HEsE a VariEty OF COMPIEX TSI EasHres bEyor ;1 - [NETHEINS.
t =1,...,T, the shifted policy 7* = (af,...,a%) is optimal for extracted from Gy, ; and by, then forallz € X, s € S,c € C,and a € A, WSCVaR:gy (1) = Zwi_l[o,ai]W)» ERM : ¢, (1) — 1 e . DPRM:g, (u) = v(1 — ) !
max pg 7 (Z,;T) J(mh0, ) 2 max J(m, oy) — ¢(0)er™ ™ Ghiax
= |[nterpretability: The agent’s objective should be clear, and its evolving risk preferences at Additionally, J(wl*, h;) Is bounded and monotonically increases as [ increases and provides a lower 12 |
intermediate steps must be identifiable, bound for our objective. - : o onem | o
1 E QR-SRM(@a;, w) —— WSCVaR}’
Existing methods often fail to satisfy all three properties simultaneously. Time-Consistent Interpretation 05 E Ei!ﬁffo
2 e I —— WSCVaRY’
Our Approach: Static Spectral Risk Measures (SRMs) Decomposition Theorem (Pflug & Pichler 2016): A law-invariant and coherent risk measure p : :
has the following decomposition 7 .
We propose optimizing for Spectral Risk Measures, a general class of coherent risk measures . . _
that can be defined as weighted averages of CVaRs. Our method, QR-SRM, achieves all three p(Z) =supE & pe (2] ]:t)} _ \\ﬁ |
desirable properties. An SRM is defined by a spectrum function ¢ or a probability measure u: S R 4 0 1 ; ; : "5 02 04 0 08 o
1 1 1 where the supremum is among all feasible non-negative F;-measurable random variables satis-
SRMy(Z) = /0 Fy(u)o(u) du = /0 CVaRa(Z) p(da) fying E [¢] = 1. Moreover, if £% is the optimal dual variable to compute the CVaR at level o, i.e.
E[£Z] = CVaRq(Z) and 0 < €% < 1/, €0 = B[6Y | F), and € = [} €u(da), the conditional risk Visualizing Time-Consistent Interpretation
o measure is given by
= Dynamic Risk Measures £ u(da) For a policy trained on CVaRy 5, we see how the initial risk level Ay 5 (vertical line) maps to a

different a—quantile of the aligned future return distribution at each step. This explicitly visualizes
the evolving, time-consistent risk objective in action.

(DRMs) are time-consistent but

1
pe(2 | F) = | CVaRog (2]
hard to interpret. !

1 0y '
Time-consistent Jo &tptde)

* CVaRiis interpretable but lacks Theorem: For any SRM defined with probability measure u, if €% is the optimal dual variable to o _ o _
generality. compute the CVaR at level o, i.e. E[£*G] = CVaRo(G), Ag = Fél(a) and Iy, is the CDF of Gy, - . f/
= Combining general risk we can calculate £ = E [¢% | F] with: 8] —— {2 ' 08 e =1
measures naively with _— o o
distributional RL (referred to as &' = Fg,( = t)/oz 2°%] — &5 B
terative Risk Measures or IRM) | | | “t | | : o ; o
results in general and and denve1 the risk level and the weight of CVaRs, at a later time step with «&* and " s i " =7
interpretable, but &ulda)/ [y & pulda). ol - I
time-inconsistent solutions. Interpretable IRM
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