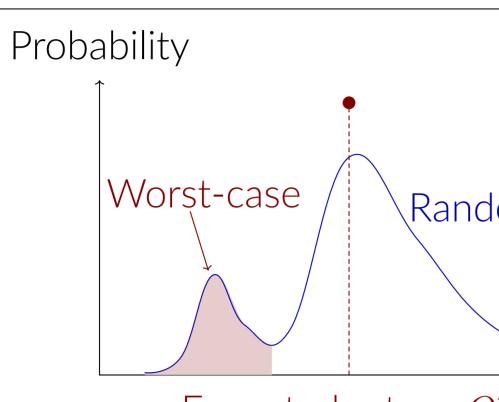
VORK UO

Motivation: Beyond Expected Return

In safety-critical domains (finance, robotics, healthcare, etc), maximizing the **expected return** is insufficient as it ignores rare but catastrophic outcomes.

- **Risk-Neutral RL:** Maximize expectation $\max_{\pi} \mathbb{E}[Z^{\pi}]$.
- **Risk-Sensitive RL:** Maximize a risk measure of the return $\max_{\pi} \rho(Z^{\pi})$



Expected return Q^7

Desirable Properties of a Risk Measure

The choice of risk measure ρ is critical. An ideal objective should possess:

- Generality: Expressiveness to capture diverse risk preferences beyond a single type (e.g., more than just CVaR).
- **Time-Consistency:** Ensures that an optimal plan remains optimal at all future decision points, avoiding self-contradictory actions. A policy $\pi^* = (a_0^*, \ldots, a_T^*)$ is time-consistent if, for any $t = 1, \ldots, T$, the shifted policy $\overrightarrow{\pi}^* = (a_t^*, \ldots, a_T^*)$ is optimal for

$$\max_{\pi \in \boldsymbol{\pi}} \rho_{t,T} \left(Z_{t,T}^{\pi} \right)$$

• Interpretability: The agent's objective should be clear, and its evolving risk preferences at intermediate steps must be identifiable.

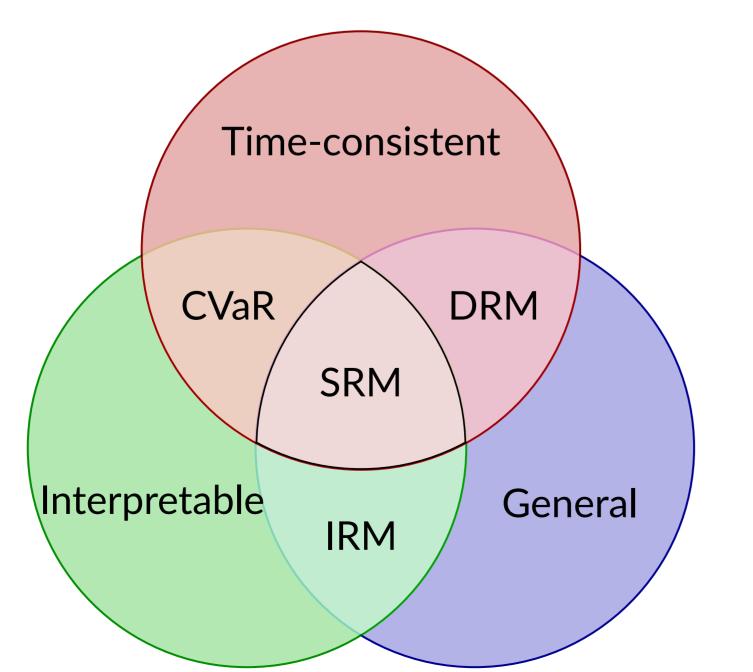
Existing methods often fail to satisfy all three properties simultaneously.

Our Approach: Static Spectral Risk Measures (SRMs)

We propose optimizing for **Spectral Risk Measures**, a general class of coherent risk measures that can be defined as weighted averages of CVaRs. Our method, **QR-SRM**, achieves all three desirable properties. An SRM is defined by a spectrum function ϕ or a probability measure μ :

$$\operatorname{SRM}_{\phi}(Z) = \int_0^1 F_Z^{-1}(u)\phi(u) \,\mathrm{d}u = \int_0^1 \operatorname{CVaR}_{\alpha}(Z)\,\mu(\mathrm{d}\alpha)$$

- Dynamic Risk Measures (DRMs) are time-consistent but hard to interpret.
- CVaR is interpretable but lacks generality.
- Combining general risk measures naively with distributional RL (referred to as Iterative Risk Measures or IRM) results in general and interpretable, but time-inconsistent solutions.



Beyond CVaR: Leveraging Static Spectral Risk Measures for **Enhanced Decision-Making in Distributional RL**

Mehrdad Moghimi, Hyejin Ku

Policy Optimization

We leverage the dual representation of SRMs, which separates the optimization into two alternating steps:

 $\max_{\pi} \operatorname{SRM}_{\phi}(G^{\pi}) = \max_{h \in \mathcal{H}} \left(\max_{\pi} \mathbb{E} \left[h(G^{\pi}) \right] \right)$

Inner Optimization: For a fixed function h, solve a distributional RL problem on an MDP with an extended state space $(\mathcal{X} \times \mathcal{S} \times \mathcal{C})$ to find the optimal policy. The distributional Bellman operator and the greedy action are:

$$G_{k+1,l}(x, s, c, a) \stackrel{\mathcal{D}}{=} R(x, a) + \gamma G_{k,l}(x', s', c', a_{k,l}(x', s', c'))$$
$$a_{G,h}(x, s, c) = \arg\max_{a \in \mathcal{A}} \mathbb{E} \left[h \left(s + c G(x, s, c, a) \right) \right]$$

2. Outer Optimization: Use the learned return distribution G to update the function h in closed-form, refining the objective.

$$h_{\mu,Z}(z) = \int_0^1 F_Z^{-1}(\alpha) + \frac{1}{\alpha} \left(z - F_Z^{-1}(\alpha) \right)^- \mu(\mathrm{d}\alpha)$$

Convergence: Suppose $J(\pi, h) = \mathbb{E}[h(G^{\pi})] + \int_0^1 \hat{h}(\phi(u)) du$. If $\pi_{k,l}$ denotes the greedy policy extracted from $G_{k,l}$ and h_l , then for all $x \in \mathcal{X}, s \in \mathcal{S}, c \in \mathcal{C}$, and $a \in \mathcal{A}$,

 $J(\pi_{k,l}, h_l) \ge \max_{\pi \in \boldsymbol{\pi}} J(\pi, h_l) - \phi(0) c \gamma^{k+1} G_{\text{MAX}}$

Additionally, $J(\pi_l^*, h_l)$ is bounded and monotonically increases as l increases and provides a lower bound for our objective.

Time-Consistent Interpretation

Decomposition Theorem (Pflug & Pichler 2016): A law-invariant and coherent risk measure ρ has the following decomposition

 $\rho(Z) = \sup_{\tilde{\epsilon}} \mathbb{E} \left[\tilde{\xi} \cdot \rho_{\tilde{\xi}} \left(Z \right) \right]$

where the supremum is among all feasible non-negative \mathcal{F}_t -measurable random variables satisfying $\mathbb{E}\left[\tilde{\xi}\right] = 1$. Moreover, if ξ^{α} is the optimal dual variable to compute the CVaR at level α , i.e. $\mathbb{E}[\xi^{\alpha}Z] = \mathrm{CVaR}_{\alpha}(Z)$ and $0 \leq \xi^{\alpha} \leq 1/\alpha, \xi^{\alpha}_{t} = \mathbb{E}[\xi^{\alpha} \mid \mathcal{F}_{t}]$, and $\xi = \int_{0}^{1} \xi^{\alpha}_{t} \mu(\mathrm{d}\alpha)$, the conditional risk measure is given by

$$\rho_{\xi}\left(Z \mid \mathcal{F}_{t}\right) = \int_{0}^{1} \operatorname{CVaR}_{\alpha\xi_{t}^{\alpha}}\left(Z \mid \mathcal{F}_{t}\right) \frac{\xi_{t}^{\alpha}\mu(\mathrm{d}\alpha)}{\int_{0}^{1}\xi_{t}^{\alpha}\mu(\mathrm{d}\alpha)}$$

Theorem: For any SRM defined with probability measure μ , if ξ^{α} is the optimal dual variable to compute the CVaR at level α , i.e. $\mathbb{E}[\xi^{\alpha}G] = \text{CVaR}_{\alpha}(G), \lambda_{\alpha} = F_{G}^{-1}(\alpha)$ and $F_{G_{t}}$ is the CDF of G_{t} , we can calculate $\xi_t^{\alpha} = \mathbb{E} \left[\xi^{\alpha} \mid \mathcal{F}_t \right]$ with:

 $\xi_t^{\alpha} = F_{G_t}(\frac{\lambda_{\alpha} - s_t}{c_t})/\alpha$

and derive the risk level and the weight of CVaRs, at a later time step with $\alpha \xi_t^{\alpha}$ and $\xi_t^{\alpha} \mu(\mathrm{d}\alpha) / \int_0^1 \xi_t^{\alpha} \mu(\mathrm{d}\alpha).$

Random return Z^{π}

$$\xrightarrow{\pi}$$
 Return

$$|+\int_0^1 \hat{h}(\phi(u)) \,\mathrm{d}u
ight)$$

$$\mathcal{F}_t)\Big]$$

Intermediate Risk Preferences: An Example

• Assume the optimal policy is for:

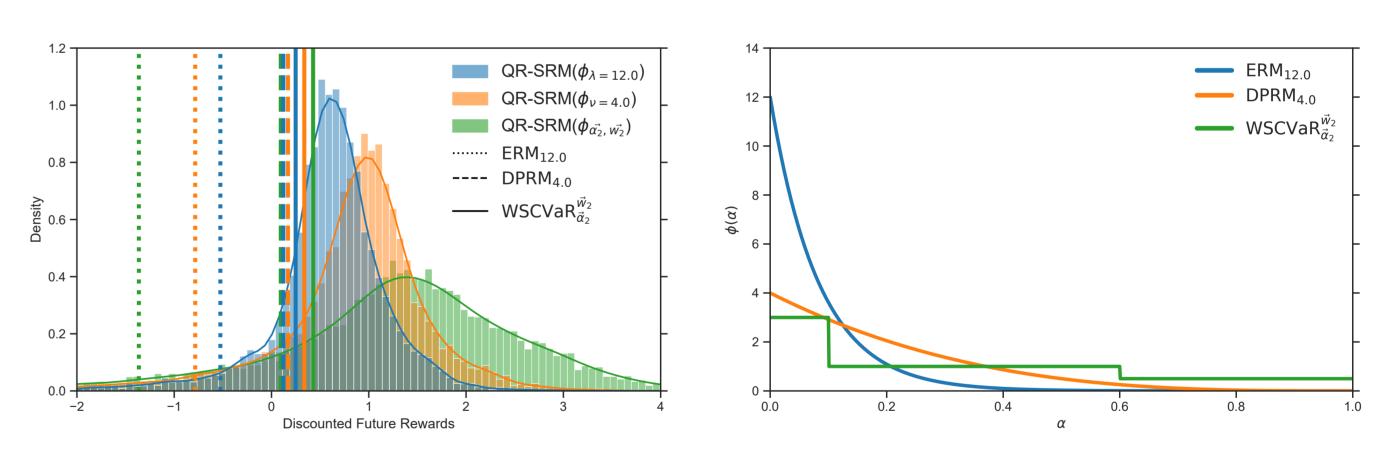
 $\rho(G) = 0.6 \cdot \text{CVaR}_{0.25}(G) + 0.6$

- At time t, let $s_t = 5$ and $c_t = 0.8$
- $\lambda_{0.25} = 12 \implies 0.25 \cdot \xi_t^{0.25} = F_{G_t}((1 + \xi_t^{0.25}))$ $\xi_t^{0.25} = 0.3/0.25 = \mathbf{1.2}$
- $\lambda_{0.8} = 39 \implies 0.8 \cdot \xi_t^{0.8} = F_{G_t}((39))$ $\xi_{\star}^{0.8} = 1.0/0.8 = \mathbf{1.25}$
- Normalizing factor: $\xi = 0.6 \cdot 1.2 + 0.4$
- Therefore, at time t, the policy is effe $\rho_{\xi}(G_t) = \frac{0.6 \cdot 1.2}{1.22} \cdot \text{CVaR}_{0.3}(G_t) + \frac{0.4}{1.22}$

Experiment: Mean-Reversion Trading

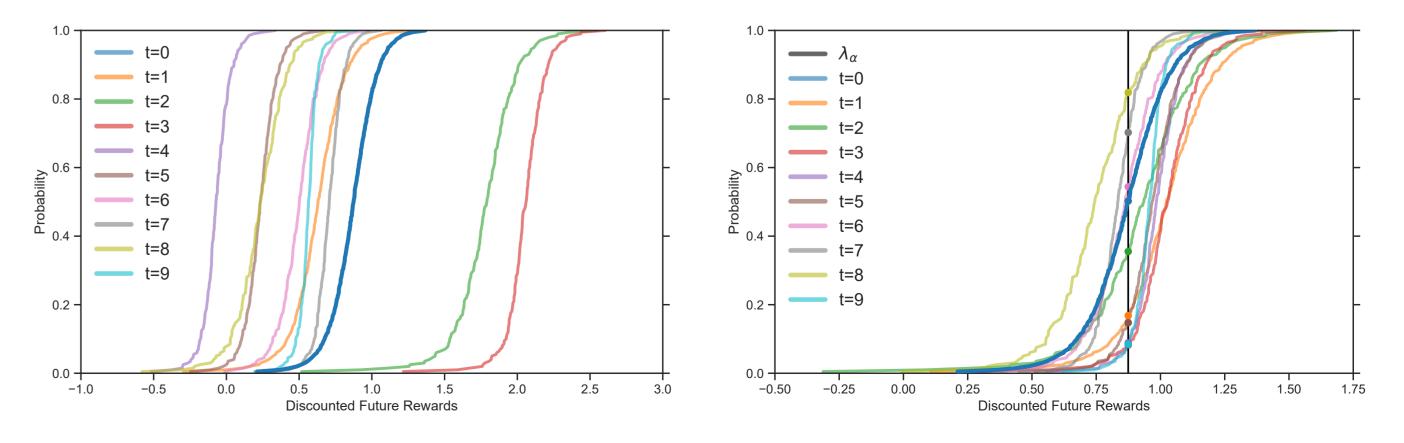
We evaluate QR-SRM in an algorithmic trading task where the asset price follows an Ornstein-Uhlenbeck process. The agent learns a policy to buy or Tsell assets to maximize a risk-adjusted return. We test a variety of complex risk measures beyond CVaR, including:

$$\mathsf{WSCVaR:}\phi_{\vec{\alpha},\vec{w}}(u) = \sum_{i} w_i \frac{1}{\alpha_i} \mathbb{1}_{[0,\alpha_i]}(u), \quad \mathsf{ERM:} \phi_{\lambda}(u) = \frac{\lambda e^{-\lambda u}}{1 - e^{-\lambda}}, \quad \mathsf{DPRM:} \phi_{\nu}(u) = \nu (1 - u)^{\nu - 1}$$



Visualizing Time-Consistent Interpretation

For a policy trained on $CVaR_{0.5}$, we see how the initial risk level $\lambda_{0.5}$ (vertical line) maps to a different α -quantile of the aligned future return distribution at each step. This explicitly visualizes the evolving, time-consistent risk objective in action.



	$\hat{ au}$	$q_{\hat{\tau}}$	$\xi^{0.25}$	$\xi^{0.8}$	$q_{\hat{\tau},t}$
$0.4 \cdot \mathrm{CVaR}_{0.8}(G)$	5%	7	4	1.25	5
	15%	9	4	1.25	6
$(12-5)/0.8) = 0.3 \Rightarrow$	25%	12	2	1.25	8
	35%	20	0	1.25	14
$(-5)/0.8) = 1.0 \Rightarrow$	45%	21	0	1.25	15
	55%	27	0	1.25	17
$4 \cdot 1.25 = 1.22$	65%	30	0	1.25	21
	75%	32	0	1.25	25
ectively optimized for:	85%	39	0	0	28
$\frac{0.4 \cdot 1.25}{1.22} \cdot \operatorname{CVaR}_{1.0}(G_t)$	95%	46	0	0	35