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Motivation: Beyond Expected Return

In safety-critical domains (finance,

robotics, healthcare, etc), maximizing

the expected return is insufficient as

it ignores rare but catastrophic

outcomes.

Risk-Neutral RL:Maximize

expectation maxπ E[Zπ].
Risk-Sensitive RL:Maximize a risk

measure of the return maxπ ρ(Zπ)
Return

Probability

Worst-case

Expected return Qπ

Random return Zπ

Desirable Properties of a Risk Measure

The choice of risk measure ρ is critical. An ideal objective should possess:

Generality: Expressiveness to capture diverse risk preferences beyond a single type (e.g.,

more than just CVaR).

Time-Consistency: Ensures that an optimal plan remains optimal at all future decision points,

avoiding self-contradictory actions. A policy π∗ =
(
a∗

0, . . . , a∗
T

)
is time-consistent if, for any

t = 1, . . . , T , the shifted policy −→π ∗ =
(
a∗

t , . . . , a∗
T

)
is optimal for

max
π∈π

ρt,T

(
Zπ

t,T

)
Interpretability: The agent’s objective should be clear, and its evolving risk preferences at

intermediate steps must be identifiable.

Existing methods often fail to satisfy all three properties simultaneously.

Our Approach: Static Spectral Risk Measures (SRMs)

We propose optimizing for Spectral Risk Measures, a general class of coherent risk measures

that can be defined as weighted averages of CVaRs. Our method, QR-SRM, achieves all three

desirable properties. An SRM is defined by a spectrum function φ or a probability measure µ:

SRMφ(Z) =
∫ 1

0
F −1

Z (u)φ(u) du =
∫ 1

0
CVaRα(Z) µ(dα)

Dynamic Risk Measures

(DRMs) are time-consistent but

hard to interpret.

CVaR is interpretable but lacks

generality.

Combining general risk

measures naively with

distributional RL (referred to as

Iterative Risk Measures or IRM)

results in general and

interpretable, but

time-inconsistent solutions.

Time-consistent

Interpretable General

CVaR DRM

IRM

SRM

Policy Optimization

We leverage the dual representation of SRMs, which separates the optimization into two alter-

nating steps:

max
π

SRMφ(Gπ) = max
h∈H

(
max

π
E [h(Gπ)] +

∫ 1

0
ĥ(φ(u)) du

)

1. Inner Optimization: For a fixed function h, solve a distributional RL problem on an MDP with
an extended state space (X × S × C) to find the optimal policy. The distributional Bellman
operator and the greedy action are:

Gk+1,l(x, s, c, a) D= R(x, a) + γ Gk,l(x′, s′, c′, ak,l(x′, s′, c′))
aG,h(x, s, c) = arg max

a∈A
E [h (s + c G(x, s, c, a))]

2. Outer Optimization: Use the learned return distribution G to update the function h in
closed-form, refining the objective.

hµ,Z(z) =
∫ 1

0
F −1

Z (α) + 1
α

(
z − F −1

Z (α)
)−

µ(dα)

Convergence: Suppose J(π, h) = E [h (Gπ)] +
∫ 1

0 ĥ(φ(u))du. If πk,l denotes the greedy policy

extracted from Gk,l and hl, then for all x ∈ X , s ∈ S, c ∈ C, and a ∈ A,

J(πk,l, hl) ≥ max
π∈π

J(π, hl) − φ(0)cγk+1GMAX

Additionally, J(π∗
l , hl) is bounded and monotonically increases as l increases and provides a lower

bound for our objective.

Time-Consistent Interpretation

Decomposition Theorem (Pflug & Pichler 2016): A law-invariant and coherent risk measure ρ
has the following decomposition

ρ(Z) = sup
ξ̃

E
[
ξ̃ · ρξ̃ (Z | Ft)

]
where the supremum is among all feasible non-negative Ft-measurable random variables satis-

fying E
[
ξ̃
]

= 1. Moreover, if ξα is the optimal dual variable to compute the CVaR at level α, i.e.

E [ξαZ] = CVaRα(Z) and 0 ≤ ξα ≤ 1/α, ξα
t = E [ξα | Ft], and ξ =

∫ 1
0 ξα

t µ(dα), the conditional risk
measure is given by

ρξ (Z | Ft) =
∫ 1

0
CVaRαξα

t
(Z | Ft)

ξα
t µ(dα)∫ 1

0 ξα
t µ(dα)

.

Theorem: For any SRM defined with probability measure µ, if ξα is the optimal dual variable to

compute the CVaR at level α, i.e. E [ξαG] = CVaRα(G), λα = F −1
G (α) and FGt

is the CDF of Gt,

we can calculate ξα
t = E [ξα | Ft] with:

ξα
t = FGt

(λα − st

ct
)/α

and derive the risk level and the weight of CVaRs, at a later time step with αξα
t and

ξα
t µ(dα)/

∫ 1
0 ξα

t µ(dα).

Intermediate Risk Preferences: An Example

Assume the optimal policy is for:

ρ(G) = 0.6 · CVaR0.25(G) + 0.4 · CVaR0.8(G)
At time t, let st = 5 and ct = 0.8
λ0.25 = 12 ⇒ 0.25 · ξ0.25

t = FGt
((12 − 5)/0.8) = 0.3 ⇒

ξ0.25
t = 0.3/0.25 = 1.2

λ0.8 = 39 ⇒ 0.8 · ξ0.8
t = FGt

((39 − 5)/0.8) = 1.0 ⇒
ξ0.8
t = 1.0/0.8 = 1.25
Normalizing factor: ξ = 0.6 · 1.2 + 0.4 · 1.25 = 1.22
Therefore, at time t, the policy is effectively optimized for:

ρξ(Gt) = 0.6 · 1.2
1.22

· CVaR0.3(Gt) + 0.4 · 1.25
1.22

· CVaR1.0(Gt)

τ̂ qτ̂ ξ0.25 ξ0.8 qτ̂ ,t

5% 7 4 1.25 5

15% 9 4 1.25 6

25% 12 2 1.25 8

35% 20 0 1.25 14

45% 21 0 1.25 15

55% 27 0 1.25 17

65% 30 0 1.25 21

75% 32 0 1.25 25

85% 39 0 0 28

95% 46 0 0 35

Experiment: Mean-Reversion Trading

We evaluate QR-SRM in an algorithmic trading task where the asset price follows an Ornstein-

Uhlenbeck process. The agent learns a policy to buy or Tsell assets to maximize a risk-adjusted

return. We test a variety of complex risk measures beyond CVaR, including:

WSCVaR:φ~α,~w(u) =
∑

i

wi
1
αi

1[0,αi](u), ERM : φλ(u) = λe−λu

1 − e−λ
, DPRM:φν(u) = ν(1 − u)ν−1
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Visualizing Time-Consistent Interpretation

For a policy trained on CVaR0.5, we see how the initial risk level λ0.5 (vertical line) maps to a
different α−quantile of the aligned future return distribution at each step. This explicitly visualizes
the evolving, time-consistent risk objective in action.
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