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Abstract
In domains such as finance, healthcare, and
robotics, managing worst-case scenarios is crit-
ical, as failure to do so can lead to catastrophic
outcomes. Distributional Reinforcement Learn-
ing (DRL) provides a natural framework to incor-
porate risk sensitivity into decision-making pro-
cesses. However, existing approaches face two
key limitations: (1) the use of fixed risk measures
at each decision step often results in overly con-
servative policies, and (2) the interpretation and
theoretical properties of the learned policies re-
main unclear. While optimizing a static risk mea-
sure addresses these issues, its use in the DRL
framework has been limited to the simple static
CVaR risk measure. In this paper, we present a
novel DRL algorithm with convergence guaran-
tees that optimizes for a broader class of static
Spectral Risk Measures (SRM). Additionally, we
provide a clear interpretation of the learned policy
by leveraging the distribution of returns in DRL
and the decomposition of static coherent risk mea-
sures. Extensive experiments demonstrate that
our model learns policies aligned with the SRM
objective, and outperforms existing risk-neutral
and risk-sensitive DRL models in various settings.

1. Introduction
In traditional Reinforcement Learning (RL), the goal is to
find a policy that maximizes the expected return (Sutton
& Barto, 2018). However, considering the variations in
rewards and addressing the worst-case scenarios are critical
in some fields such as healthcare or finance. A risk-averse
policy can help address the reward uncertainty arising from
the stochasticity of the environment. This risk aversion
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can stem from changing the objective from expectation to
other risk measures such as the Conditional Value-at-Risk
(Bäuerle & Ott, 2011), coherent risk measures (Tamar et al.,
2017), convex risk measures (Coache & Jaimungal, 2023),
and Entropic-VaR (Ni & Lai, 2022). Another approach is
limiting the worst-case scenarios by using constraints such
as variance (Tamar et al., 2012) or dynamic risk measures
(Chow & Pavone, 2013) in the optimization problem.

Another area of research that has gained attention for risk-
sensitive RL (RSRL) is Distributional RL (DRL) (Morimura
et al., 2010; Bellemare et al., 2017). This paradigm diverges
from the traditional RL by estimating the return distribu-
tion instead of its expected value. DRL algorithms not
only demonstrate notable improvements compared to con-
ventional RL methods but also enable a variety of new ap-
proaches to risk mitigation. In this context, a few risk mea-
sures such as CVaR (Stanko & Macek, 2019; Keramati et al.,
2020), distortion risk measure (Dabney et al., 2018a), En-
tropic risk measure (Liang & Luo, 2024), or static Lipschitz
risk measure (Chen et al., 2024) have been explored.

In the DRL framework, applying a fixed risk measure at each
step leads to policies that are optimized for neither static
nor dynamic risk measures (Lim & Malik, 2022). In this
case, action selection at different states are not necessarily
aligned with each other, which can lead to policies that are
sub-optimal with respect to the agent’s risk preference. This
issue, known as time inconsistency, is a common challenge
in risk-sensitive decision-making (Shapiro et al., 2014). In-
tuitively, this misalignment can be understood as the fact
that finding optimal policies starting from different states
can yield different and inconsistent policies. To mitigate
this, dynamic risk measures were introduced (Ruszczyński,
2010), which evaluate risk at each time step, unlike static
risk measures that assess risk over entire episodes. However,
dynamic risk measures are difficult to interpret, limiting
their practical applicability (Majumdar & Pavone, 2020;
Gagne & Dayan, 2022).

Optimizing static risk measures is more interpretable since it
can be described as finding the policy that gives the best pos-
sible outcome in the worst-case scenario. However, unlike
dynamic risk measures, the risk preference that the policy
optimizes for at later stages is unclear. Traditionally, calcu-
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lating these risk preferences has been limited to CVaR due to
computational complexity (Bäuerle & Ott, 2011; Bellemare
et al., 2023). However, we demonstrate that by leverag-
ing the decomposition of coherent risk measures (Pflug &
Pichler, 2016) and the return distribution within the DRL
framework, these evolving risk preferences can also be com-
puted for more general spectral risk measures. The intuition
behind this approach is that a decision maker selects an
initial risk preference, but it may change as new information
becomes available over time. It is important to emphasize
that, unlike previous works (Chow et al., 2015; Stanko &
Macek, 2019) that use the decomposition of CVaR to de-
rive optimal policies, we utilize this decomposition only to
explain the behavior of the optimal policy, not for policy
optimization. In fact, Hau et al. (2023) have demonstrated
that the decomposition of coherent risk measures cannot be
reliably applied for policy optimization, and the optimality
claims in those works are inaccurate.

The contributions of our work are as follows:

• We propose a novel DRL algorithm with convergence
guarantees that optimizes static Spectral Risk Measures
(SRM). SRM, expressed as a convex combination of
CVaRs at varying risk levels, provides practitioners
with the flexibility to define a wide range of risk pro-
files, including the well-known Mean-CVaR measure.

• We demonstrate that return distributions in the DRL
framework enable the temporal decomposition of SRM,
allowing us to identify intermediate risk measures that
preserve the optimality of the policy. These risk mea-
sures provide insights into the agent’s evolving risk
preferences over time and enhance the interpretability
of our algorithm.

• Through extensive evaluations, we show that our model
accurately learns policies aligned with the SRM ob-
jective and outperforms both risk-neutral and risk-
sensitive DRL models in various settings.

2. Related Works
In this study, we focus on discovering policies with the
highest risk-adjusted value:

max
π∈π

ρ(Zπ). (1)

Here, ρ(Zπ) denotes the risk-adjusted value of the return of
policy π and π denotes the set of history-dependent policies.
In general, optimal policies may depend on all available
information up to the current time step. In cases such as
risk-neutral RL, optimal policies are typically stationary
and Markovian. However, in risk-sensitive RL, the situation
is more complex. For instance, in the static CVaR case,

Bäuerle & Ott (2011) demonstrates that the optimal policy
depends on the history through a single statistic. By using
the representation of CVaR introduced by Rockafellar &
Uryasev (2000), they reduce the problem to an ordinary
Markov Decision Process (MDP) with an extended state
space:

max
π∈π

CVaRα(Z
π) =max

π∈π
max
b∈R

(
b+

1

α
E
[
[Zπ − b]

−
])

=max
b∈R

(
b+

1

α
max
π∈π

E
[
[Zπ − b]

−
])

(2)

where u(z) : z 7→ [z − b]
− denote a utility function that is

0 if z > b, and z− b otherwise. For a fixed policy, the supre-
mum is attained at b = F−1

Zπ (α). With this representation,
the problem is divided into inner and outer optimization
problems, with the inner optimization addressing policy
search for a fixed parameter b, while the outer optimization
seeks the optimal parameter b.

Bäuerle & Rieder (2014) and Bäuerle & Glauner (2021)
extend the idea of state augmentation to the case with a
continuous and strictly increasing utility function and SRM
as the risk measures. Their work demonstrates that suffi-
cient statistics for solving these problems are cumulative
discounted reward and the discount factor up to the decision
time. In each of these studies, state augmentation plays a
crucial role in formulating a Bellman equation to solve the
inner optimization. Regarding the outer optimization in the
CVaR case, only the existence of the optimal parameter b
is shown. However, for SRM, which needs estimation of
an increasing function for the outer optimization, a piece-
wise linear approximation is used to allow transforming
the problem into a finite-dimensional optimization problem.
This is then solved using conventional global optimization
methods.

In contrast to Bäuerle & Glauner (2021), we use the DRL
framework to derive SRM-optimal policies. This framework
not only enables the transformation of the problem into a
finite-dimensional optimization problem but also allows us
to use the closed-form solution to the outer optimization.
As we will discuss in section 5, the DRL framework is also
essential for identifying the intermediate risk measures for
a time-consistent interpretation of optimal policy. While
Bäuerle & Ott (2011) demonstrate the existence of these
intermediate risk measures for the simple CVaR case, they
are not discussed for SRMs in Bäuerle & Glauner (2021).

In the distributional RL framework, Dabney et al. (2018a)
introduce the use of risk measures beyond the expectation
for action selection. However, their work does not address
the theoretical properties of the resulting risk-sensitive poli-
cies. For the static CVaR case, Bellemare et al. (2023) adopt
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the formulation in Equation 2 and solve the problem using
state augmentation. Lim & Malik (2022) focus on a special
setting where an optimal Markov CVaR policy exists in the
original MDP without requiring state space augmentation.
More recently, Kim et al. (2024) study risk-constrained RL,
using static SRMs to define the constraints. In contrast to
our approach, which leverages a closed-form solution for the
outer optimization, they rely on a computationally intensive
gradient-based method.

3. Preliminary Studies
3.1. Spectral Risk Measures

Let (Ω,F ,P) represent a probability space and Z represent
the space of F-measurable random variables. The histori-
cal information available at different time steps is denoted
by a filtration F := (Ft)t≥0 where Fs ⊂ Ft ⊂ F for
0 ≤ s < t. We also use ρ : Z → R to denote a risk mea-
sure. In the context of this study, Z and ρ(Z) are interpreted
as the return and its risk-adjusted value, respectively. Let
FZ(z) = P(Z ≤ z), z ∈ R denote the cumulative distribu-
tion function (CDF), and F−1

Z (u) = inf{z ∈ R : FZ(z) ≥
u}, u ∈ [0, 1] denote the quantile function of a random vari-
able Z. The SRM, introduced by Acerbi (2002), is defined
as

SRMϕ(Z) =

∫ 1

0

F−1
Z (u)ϕ(u)du, (3)

where the risk spectrum ϕ : [0, 1] → R+ is a left con-
tinuous and non-increasing function with

∫ 1

0
ϕ(u)du =

1, and denotes the risk preference of the agent. The
CVaRα(Z), α ∈ (0, 1] is a special case of SRM with the
risk spectrum ϕ(u) = 1

α1[0,α](u). The SRM can also be
defined as a convex combination of CVaRs with different
risk levels (Kusuoka, 2001). With probability measure
µ : [0, 1] → [0, 1]1, the SRM can be written as

SRMµ(Z) =

∫ 1

0

CVaRα(Z)µ(dα). (4)

It is shown that an SRM with a bounded spectrum also has
a supremum representation

SRMϕ(Z) = sup
h∈H

{
E [h(Z)] +

∫ 1

0

ĥ(ϕ(u))du

}
(5)

where H denotes the set of concave functions h : R → R
and ĥ is the concave conjugate of h (Pichler, 2015). In this
formulation, the supremum is attained in hϕ,Z : R → R

1For a bounded and differentiable risk spectrum ϕ, we have
dϕ(u) = − 1

u
µ(du) and ϕ(α) =

∫ 1

α
1
u
µ(du)

which satisfies
∫ 1

0
ĥϕ,Z(ϕ(u))du = 0:2

hϕ,Z(z) =

∫ 1

0

F−1
Z (α) +

1

α

(
z − F−1

Z (α)
)−
µ(dα). (6)

3.2. Markov Decision Process

In this work, we aim to solve an infinite horizon discounted
MDP problem presented by (X ,A,R,P, γ, x0). In this
tuple, X and A denote the state and action spaces, R : X ×
A → P(R) the reward kernel, and P : X × A → P(X )
the transition kernel, and γ ∈ [0, 1) the discount factor.
Without loss of generality, we assume a single initial state
represented by x0. Additionally, we assume that the rewards
are bounded on the interval [RMIN, RMAX] and RMIN ≥ 0.

Let Gπ denote the sum of discounted rewards when starting
at X0 and following policy π, i.e., Gπ =

∑∞
t=0 γ

tRt. With
GMIN = RMIN/(1− γ) and GMAX = RMAX/(1− γ), it’s
easy to see that Gπ takes on values in [GMIN, GMAX]. In
this work, we aim to optimize the risk-adjusted value of the
cumulative discounted reward based on the SRM. Since the
formulation of SRM given in Equation 5 is more suitable
in the context of policy-dependent returns, we write our
objective as

max
π∈π

SRMϕ(G
π) = max

π∈π
max
h∈H

J(π, h)

= max
h∈H

(
max
π∈π

J(π, h)

)
. (7)

where J(π, h) = E [h (Gπ)] +
∫ 1

0
ĥ(ϕ(u))du.

In the remainder of this paper, maxπ∈π J(π, h) is referred
to as the inner optimization and finding the maxh∈H(·) is
referred to as the outer optimization. To solve the inner
optimization problem, we can reduce the search space from
history-dependent policies in the original MDP to Markov
policies in an augmented MDP with an extended state space
denoted by X := X × S × C where S = [GMIN, GMAX]
represent the space of accumulated discounted rewards and
C = (0, 1] represent the space of discount factors up to the
decision time (Rieder & Bäuerle, 2011; Bäuerle & Glauner,
2021; Bastani et al., 2022). The Markov policies in this
MDP take the form πh : X × S × C → P(A), where the
subscript h denotes the dependence of the policy on function
h in the inner optimization problem and the space of Markov
policies in this MDP is denoted by πM. With X0 = x0,
S0 = 0, C0 = 1, the transition structure of this MDP is
defined by At ∼ πh(· | Xt, St, Ct), Rt ∼ R(Xt, At),
Xt+1 ∼ P(Xt, At), St+1 = St + CtRt, and Ct+1 = γCt.

3.3. Distributional RL

Distributional Reinforcement Learning is a sub-field of RL
that aims to estimate the full distribution of the return, as op-

2Proof is available in Appendix A.
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posed to solely its expected value. To estimate the distribu-
tion of the return, DRL uses a distributional value function,
which maps states and actions to probability distributions
over returns. With ηπ(x, a) denoting the distribution of
Gπ(x, a), the distributional Bellman operator is defined as

(T πη) (x, a) = Eπ [(bR,γ)#η(X
′, A′) | X = x,A = a] ,

(8)
where A′ ∼ π(·) and br,γ : z 7→ r + γz. The push-
forward distribution (bR,γ)#η(X

′, A′) is also defined as
the distribution of bR,γ(G

π(X ′, A′)). There are multiple
ways to parameterize the return distribution, such as the
Categorical (C51 algorithm, Bellemare et al., 2017) or the
Quantile (QR-DQN algorithm, Dabney et al., 2018b) rep-
resentation. Here, we use the quantile representation as
it simplifies the calculation of risk-adjusted values. With
τi = i/N, i = 0, · · · , N representing the cumulative proba-
bilities, the quantile representation is given by ηθ(x, a) =
1
N

∑N
i=1 δθi(x,a), where the distribution is supported by

θi(x, a) = F−1
G(x,a) (τ̂i) , τ̂i = (τi−1 + τi)/2, 1 ≤ i ≤ N .

3.4. Decomposition of Coherent Risk Measures

The decomposition theorem presented in Pflug & Pichler
(2016) provides a valuable tool for identifying conditional
risk preferences. This theorem states that a law-invariant
and coherent risk measure ρ can be decomposed as ρ(Z) =
supξ̃ E[ξ̃ · ρξ̃ (Z | Ft)], where the supremum is among all
feasible random variables ξ̃ satisfying E[ξ̃] = 1. In this
theorem, if ξα is the optimal dual variable to compute the
CVaR at level α, i.e. E [ξαZ] = CVaRα(Z) and 0 ≤
ξα ≤ 1/α, ξαt = E [ξα | Ft], and ξ =

∫ 1

0
ξαt µ(dα), the

conditional risk preference is given by

ρξ (Z | Ft) =

∫ 1

0

CVaRαξαt
(Z | Ft)

ξαt µ(dα)

ξ
. (9)

In section 5, we show how the return-distribution of each
state can be used to calculate ξαt . This value can be used
to calculate the new risk levels (αξαt ) and their weights
(ξαt µ(dα)/ξ) in the intermediate risk preferences. More-
over, a thorough discussion on the decomposability of risk
measures and the time-consistency concept can be found in
Appendix F.

4. The Model
In this section, we propose an RL algorithm called Quantile
Regression with SRM (QR-SRM) to solve the optimization
problem outlined in Equation 7. In our approach, the func-
tion h is fixed to update the return-distribution in the inner
optimization, and then the return-distribution is fixed to up-
date the function h. The intuition behind our approach is
as follows: The risk spectrum ϕ determines the agent’s risk

Algorithm 1 The QR-SRM Algorithm

Input: A random initialization of π∗
0 or Gπ∗

0

for l = 1, 2, · · · do
Step 1: (The Closed-form Solution in Equation 6)
hl = argmaxh J(π

∗
l−1, h)

Step 2: (The Inner Optimization (Algorithm 2))
π∗
l = argmaxπ J(π, hl)

end for

preference by assigning different significance to quantiles of
the return-distribution of the initial state. Fixing the function
h, as displayed in Equation 6, can be interpreted as fixing
the estimation of the return-distribution of the initial state.
With this estimation, we can solve the inner optimization
and find the optimal policy and its associated distributional
value function. Since Gπ is approximated for each state-
action pair, we can extract the quantiles of the initial state
return-distribution and leverage the closed-form solution
presented in Equation 6 to update our estimation of the func-
tion h in the outer optimization.3 Algorithm 1 presents an
overview of our method. Note that an important property of
the outer optimization’s closed-form solution that we will
use throughout this section is that

∫ 1

0
ĥϕ,G(ϕ(u))du = 0

for any return-distribution G.

For the inner optimization, let η ∈ P(R)X×S×C×A rep-
resent the return-distribution function over the augmented
state-action space. We denote the corresponding return vari-
able instantiated from η as G. The greedy selection rule,
denoted by Gh, highlights its dependence on the function
h. The greedy action at the augmented state (x, s, c) is then
given by:

aG,h(x, s, c) = argmax
a∈A

E [h (s+ cG(x, s, c, a))] . (10)

Since function h is fixed until the optimal policy associated
with it is found, we can analyze the convergence of the inner
optimization with the Bellman operator T Gh separately and
then discuss the convergence of the overall algorithm.

We use the index k and l to show iterations on η and h,
respectively. Therefore, ηk,l denotes the kth iteration of
return-distribution approximation when hl is used for greedy
action selection and T Gl denotes the distributional Bellman
operator associated with hl. This way, the algorithm begins
by setting η0,0(x, s, c, a) = δ0 for all x ∈ X , s ∈ S, c ∈ C,
and a ∈ A, initializing h0 based on Equation 6, and iterating
ηk+1,l = T Glηk,l. This iteration can also be expressed in

3This is in contrast with the work of Bäuerle & Glauner (2021),
which relies on global optimization methods for the outer optimiza-
tion. Additionally, estimating Gπ for each state is crucial for iden-
tifying intermediate risk measures that ensure a time-consistent
interpretation of the optimal policy.
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terms of random-variable functions

Gk+1,l(x, s, c, a)
D
= R (x, a)+

γGk,l (X
′, S′, C ′, ak,l (X

′, S′, C ′)) , (11)

where D shows equality in distribution and ak,l denotes the
action selection with Gk,l and hl.

For the outer optimization, if the optimal policy derived with
fixed function hl is denoted by π∗

l and the return-variable
of this policy is denoted by Gπ∗

l , the iteration on function h
is given by

hl+1 = argmax
h∈H

J(π∗
l , h) (12)

Since the supremum in this optimization takes the form of
Equation 6, this iteration can be viewed as updating function
h with the return distribution of the initial state-action with
the highest SRM(Gπ∗

l ). The following theorem discusses
the convergence of our approach and its proof is provided
in Appendix B and C.

Theorem 4.1. If πk,l denotes the greedy policy extracted
from Gk,l and hl, then for all x ∈ X , s ∈ S, c ∈ C, and
a ∈ A,

J(πk,l, hl) ≥ max
π∈πM

J(π, hl)− ϕ(0)cγk+1GMAX (13)

Additionally, J(π∗
l , hl) is bounded and monotonically in-

creases as l increases and provides a lower bound for our
objective.

It is important to highlight the distinction between our con-
vergence results and those established for the CVaR case
in Bellemare et al. (2023). A key property of CVaR that
enables convergence to the optimal policy is that the infor-
mation required to find the optimal solution can be summa-
rized in a single variable. In the CVaR case, let qα denote
the α-quantile in function h. Under this formulation, the
greedy action selection in Equation 10 can be simplified to
the following equation, which aligns with the CVaR greedy
policy discussed in Bellemare et al. (2023):

aG,h(x, s, c) = argmax
a∈A

E
[
(G(x, s, c, a)− qα − s

c
)−
]
.

Note that in this case, we only need to track a single vari-
able, qα−s

c , rather than all three variables qα, s, and c, which
simplifies action selection. In Bellemare et al. (2023), this
variable is denoted by b, as seen in Equation 2. The signif-
icance of using a single variable becomes evident in their
work (Bellemare et al., 2023, Lemma 7.26), where finding
the initial b requires searching over all possible values of b.
This step is crucial for proving convergence to the optimal
solution for CVaR.

From a theoretical perspective, for SRM, if we extend the
state space to include every quantile required to define h,

Algorithm 2 The Sample Loss For The Inner Optimization of
QR-SRM

Input: γ, θ̃, µ̃, θ, (x, s, c, a, r, x′)
s′ ← s+ cr
c′ ← γc

Q(x′, s′, c′, a′) := 1
N

∑
i,j µ̃i

(
s′ + c′θj(x

′, s′, c′, a′)− θ̃i
)−

a∗ ← argmaxa′ Q(x′, s′, c′, a′)
T Glθj (x, s, c, a)← r + γθj (x

′, s′, c′, a∗) , j = 1 . . . N

Output:
∑N

i=1 Ej

[
ρκτ̂i

(
T Glθj (x, s, c, a)− θi (x, s, c, a)

)]

we can perform a similar search. However, this approach is
computationally expensive and impractical. Therefore, we
do not adopt this method in our work and instead focus on a
more scalable approach that balances theoretical soundness
with practical feasibility.

Algorithm 2 outlines the sample loss for the inner opti-
mization problem. A detailed discussion on the conver-
gence of this Algorithm is available in Appendix E. It
is evident that, compared to the sample loss of the risk-
neutral QR-DQN algorithm, the only difference lies in the
extended state space and action selection. In this algo-
rithm, function h is defined by the return distribution of
the initial state θ̃i := F−1

G̃
(τ̂i), where G̃ := Gπ∗

l−1 . Also,
µ̃i :=

∫ τi
τi−1

1
αµ(dα) = ϕ(τi−1)− ϕ(τi) denotes the signifi-

cance of each quantile. The derivation of the action selection
in this algorithm from function h is presented in Appendix
D.

5. Intermediate Risk Preferences
In this section, we discuss the behavior of the optimal policy
by identifying the intermediate risk measures for which the
policy is optimized. We note that the calculations discussed
here do not introduce any computational overhead in the
optimization process and are provided solely to enhance the
interpretability of our model. Suppose that G and Gt rep-
resent Gπ∗

(x0, 0, 1) and Gπ∗
(xt, st, ct), respectively, with

π∗ denoting the optimal policy. In the context of static SRM,
the agent’s risk preference is defined by assigning weights to
the quantiles of G. To compute the weights for the quantiles
of Gt, we establish the relationship between these two re-
turn variables, which is where state augmentation becomes
crucial.

Suppose the partial random return is denoted by Gk:k′ =∑k′

t=k γ
t−kRt for k ≤ k′ and k, k′ ∈ N. In traditional

RL, the random return is decomposed into the one-step re-
ward and the rewards obtained later: G0:∞ = R0 + γG1:∞.
With Gπ(x)

D
= G0:∞, the Markov property of the MDP

allows writing this decomposition as Gπ(x)
D
= R0 +

γGπ(X1), X0 = x. In the extended MDP, π ∈ πM also
has the Markov property, therefore we have the flexibility to
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break down the overall return into the t-step reward and the
rewards acquired after time t, G0:∞ = G0:t−1 + γtGt:∞,
and write

Gπ(x0, 0, 1)
D
= St + CtG

π(Xt, St, Ct). (14)

Since G represents the average of st+ctGt across all states,
for any state (xt, st, ct) and any quantile level α, we can
determine the quantile level β for Gt such that F−1

G (α) =
st + ctF

−1
Gt

(β). The following theorem shows that ξαt is, in
fact, the ratio of these quantile levels (β/α), allowing us to
define the agent’s risk preference at future time steps with
respect to Gt. The proof of this theorem can be found in
Appendix G.

Theorem 5.1. For any SRM defined with probability mea-
sure µ, if ξα is the optimal dual variable to compute the
CVaR at level α, i.e. E [ξαG] = CVaRα(G), λα =
F−1
G (α) and FGt is the CDF of Gt, we can calculate
ξαt = E [ξα | Ft] with:

ξαt = FGt
(
λα − st
ct

)/α (15)

and derive the risk level and the weight of CVaRs, at a
later time step with αξαt and ξαt µ(dα)/ξ. For the general
distributions with discontinuities, calculating ξαt requires
an additional term:

ξαt = FGt
(
λα − st
ct

)/α− p̄ · (FG(λα)− α)/α (16)

where p̄ = pGt
(λα−st

ct
)/pG(λα).

Note that with the Quantile representation of return distribu-
tions, we have FG(λα)− α ≤ 1/N , therefore the error of
omitting the additional term in Equation 16 becomes neg-
ligible as the number of quantiles increases. The intuition
behind Theorem 5.1 and especially Equation 15 is to find ξt
for the return distribution of future states (Gt) and use the
Decomposition Theorem in Section 3.4 to convert this value
into the risk levels and weights of CVaRs and its associated
risk measure at future states. To further elaborate on the
components of the Decomposition theorem and Theorem
5.1, we discuss an example in detail later in this section. We
also provide two additional examples in Appendix H, where
we use Theorem 5.1 to demonstrate the change in the risk
preferences and also analyze a single trajectory in a more
practical context within one of our experiments. These ex-
amples give a clear intuition behind the temporal adaptation
of the risk measure.

Example 1. To illustrate the calculations of the conditional
risk measures, consider the Markov process in Figure 1,
where the number on the edges and nodes represent the
transition probabilities and rewards, respectively. In this
example, we use γ = 0.5. For instance, the trajectory

x0

2

x11

4

x21

6

x12

4

x22

16

x32

20

x42

4

x52

8

x62

20

0.6 0.4

0.5 0.3 0.2 0.4 0.3 0.3

Figure 1: A Markov process with the transition probabilities and
rewards denoted on the edges and nodes. This process can also be
considered as an MDP with a deterministic policy π. In this way,
the number in each node denotes the r(x, π(x)).

(x0, x
1
1, x

3
2) has the reward of 9 = 2 + 0.5 · 4 + 0.52 · 20

and the probability of 0.6 · 0.2 = 0.12.

Suppose the risk measure has the following form:

ρ(G) = 0.7 · CVaR0.4(G) + 0.3 · CVaR0.8(G)

Here, a direct calculation of the risk measure shows that
CVaR0.4(G) = 5.25 and CVaR0.8(G) = 6.375, therefore
we have

ρ(G) = 0.7 · 5.25 + 0.3 · 6.375 = 5.5875.

We now apply the Decomposition theorem to compute this
value using conditional risk measures and clarify the nota-
tion used in this theorem. The first step involves analyzing
how the risk levels α and the weights of each CVaRα evolve
at t = 1. Table 1 presents these calculations, where ξα is
the optimal dual variable to compute the CVaR at level α
satisfying E[ξ̃] = 1 and 0 ≤ ξα ≤ 1/α, i.e. E [ξαZ] =
CVaRα(Z). Additionally, we have ξαt = E [ξα | Ft] and
ξ =

∫ 1

0
ξαt µ(dα) = 0.7·ξ0.4t +0.3·ξ0.8t , and the updated risk

levels and weights are computed using αξαt and ξαt µ(dα)/ξ.

Table 1: Details used to compute the conditional risk measures.

pG(z) G ξ0.4 ξ0.8 X1 pGt(z) Gt ξ0.4t ξ0.8t ξ

30% 5 2.5 1.25
x1
1

50% 6
1.25 1.0833 1.218% 8 0 1.25 30% 12

12% 9 0 0.41667 20% 14

16% 6 1.5625 1.25
x2
1

40% 8
0.625 0.875 0.712% 7 0 1.25 30% 10

12% 10 0 0 30% 16

For instance, in state x11, we have ξ0.4t = 1.25 and ξ0.8t =
1.0833. With ξ = 0.7 · 1.25 + 0.3 · 1.0833 = 1.2, the
conditional risk measure at this state is calculated as

ρξ(Gt |X0 = x11)

=
1.25

1.2
· CVaR0.5(Gt) +

1.0833

1.2
· CVaR0.86(Gt)

= 0.73 · CVaR0.5(Gt) + 0.27 · CVaR0.86(Gt)

= 0.73 · 6 + 0.27 · 8.69 = 6.73
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Similarly for x21, we have

ρξ(Gt |X0 = x21)

= 0.625 · CVaR0.25(Gt) + 0.375 · CVaR0.7(Gt)

= 0.625 · 8 + 0.375 · 8.86 = 8.32.

Recall that ρ(G) = E[ξ · ρξ (G | Ft)]. Thus, to compute
ρ(G), the probabilities of reaching x11 or x21 are reweighted
using ξ. Moreover, since the return distribution of the initial
state, conditioned on being at t = 1, is given by st + ctGt,
with st = 2 and ct = 0.5, we obtain the same value for
ρ(G):

ρ(G) = 2+0.5 · (0.6 ·1.2 ·6.73+0.4 ·0.7 ·8.32) = 5.5875

Now, consider the goal of analyzing the evolution of the
risk measure over time. With this goal in mind, we only
need to calculate the updated risk levels and weights using
ξαt . Theorem 5.1 demonstrates that, rather than directly
computing ξαt using E [ξα | Ft], we can leverage the CDF
of return variables, as outlined in Equations 15 and 16, to
perform the calculations. For X1 = x11, we have:

ξ0.4t = FGt
(
6− 2

0.5
)/0.4 = FGt

(8)/0.4 = 0.5/0.4 = 1.25,

ξ0.8t = FGt
(
9− 2

0.5
)/0.8−

pGt
( 9−2

0.5 )

pG(9)
(FG(9)− 0.8)/0.8

= 1/0.8− 0.2

0.12
(0.88− 0.8)/0.8 = 1.0833,

and for X1 = x21, we have:

ξ0.4t = FGt
(
6− 2

0.5
)/0.4−

pGt
( 6−2

0.5 )

0.16
(FG(6)− 0.4)/0.4

= 0.4/0.4− 0.4

0.16
(0.46− 0.4)/0.4 = 0.25/0.4 = 0.625,

ξ0.8t = FGt(
9− 2

0.5
)/0.8 = FGt(14)/0.8 = 0.7/0.8 = 0.875.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

(a) The Quantile function
0 5 10 15

0

0.2

0.4

0.6

0.8

1

(b) The CDF

Figure 2: The Quantile function and the CDF of the return-
distributions in states x0 (black), x1

1 (green), and x2
1 (blue) in

Example 1.

6. Experimental Results
In this section, we study our model’s performance with four
examples. First, we start with the American Option Trading
environment, commonly used in the RSRL literature (Tamar
et al., 2017; Chow & Ghavamzadeh, 2014; Lim & Malik,
2022), followed by the Mean-reversion trading environment
as outlined in the work by Coache & Jaimungal (2023).
Finally, we tackle the more challenging Windy Lunar Lander
environment. Ultimately, in Appendix I, we also examine
the effect of the number of quantiles on performance. The
details of these environments are available in Appendix J.

For each experiment, we report the expected value and the
risk-adjusted value of the discounted return. Additionally,
we employ a diverse range of risk spectrums to derive poli-
cies in our algorithm. We denote this approach as QR-
SRM(ϕ), where ϕ represents the risk spectrum, with sub-
scripts indicating the functional form. The specific cases are
as follows:

• QR-SRM(ϕα): CVaR with ϕα(u) = 1
α1[0,α](u),

• QR-SRM(ϕα⃗,w⃗): Weighted Sum of CVaRs (WSCVaR)
with ϕα⃗,w⃗(u) =

∑
i wi

1
αi
1[0,αi](u),

• QR-SRM(ϕλ): Exponential risk measure (ERM) with
ϕλ(u) =

λe−λu

1−e−λ ,
• QR-SRM(ϕν): Dual Power risk measure (DPRM) with
ϕν(u) = ν(1− u)ν−1.

6.1. American Put Option Trading

In this environment, we assume that the price of the underly-
ing asset follows a Geometric Brownian Motion and at each
time step, the the option-holder can either exercise or hold
the option. For this example, we selected QR-SRM(ϕα)
with α ∈ {0.2, 0.6, 1.0}. The distribution of option pay-
off is displayed in Figure 3(a). In this figure, the solid,
dashed, and dotted vertical lines depict the CVaR1.0(G),
CVaR0.6(G), and CVaR0.2(G) for each of these distribu-
tions, respectively. We can see that QR-SRM(ϕα=1.0), QR-
SRM(ϕα=0.6), and QR-SRM(ϕα=0.2) successfully finds
the policy with the highest CVaR1.0(G), CVaR0.6(G) and
CVaR0.2(G), respectively. The exercise boundary of each
policy, as depicted in Figure 3(b), also shows that as α de-
creases from 1.0 to 0.6 and then to 0.2, the policy becomes
more conservative and the agent exercises the option sooner,
leading to higher CVaR0.2(G) but lower CVaR1.0(G).

6.2. Mean-reversion Trading Strategy

In the algorithmic trading framework, the asset price fol-
lows a mean-reverting process and the agent can buy or
sell the asset to earn reward. To showcase our model’s
performance and its versatility to employ a diverse range
of risk spectrums for policy derivation, we employ QR-
SRM(ϕλ=12.0), QR-SRM(ϕν=4.0), and QR-SRM(ϕα⃗2,w⃗2

)
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Figure 3: Figure 3(a) illustrates the distribution of discounted
returns for different policies. Figure 3(b) demonstrates the exercise
boundary of each policy.

with α⃗2=[0.1, 0.6, 1.0] and w⃗2=[0.2, 0.3, 0.5]. In Figure
4(a), the solid, dashed, and dotted vertical lines depict
the WSCVaRw⃗2

α⃗2
(G), ERM12.0(G), and DPRM4.0(G) for

each of these distributions, respectively. This figure demon-
strates that our model effectively handles more complex
risk measures and identifies the policy with the highest
SRM(G).
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Figure 4: Figure 4(a) illustrates the distribution of discounted re-
turns for different policies. Figure 4(b) displays the risk spectrums
used to derive these policies.

For this example, we also conduct a comparative evaluation
of our model against the risk-neutral QR-DQN model, its
risk-sensitive variant introduced in Bellemare et al. (2023)
for static CVaR, and a model with risk-sensitive action se-
lection similar to the approach proposed by Dabney et al.
(2018a). We refer to these two models as QR-CVaR and
QR-iCVaR. As the QR-iCVaR with α=1 is identical to the
QR-DQN model, only the results of one of them are dis-
played.

The first three columns of Table 2 represent the risk-adjusted
values w.r.t CVaRα metric with α ∈ {1.0, 0.5, 0.2}. As
expected, QR-SRM with CVaR as the risk measure and
QR-CVaR exhibit similar performances. On the contrary,
QR-iCVaR shows sub-optimal results for α=0.5. Even for
α values of 0.2 and 1.0, where the average risk-adjusted val-
ues of all three models are close, QR-iCVaR achieves lower
risk-adjusted value w.r.t other risk measures. Also, a com-
parison between QR-SRM(ϕα=1.0) and QR-DQN shows
that our model discovers superior policies w.r.t various risk

measures.

For ERM4.0, DPRM2.0, and WSCVaRw⃗2

α⃗2
, our model

can identify top-performing policies. Furthermore, we
train a QR-SRM(ϕα⃗3,w⃗3

) algorithm with α⃗3=[0.2, 1.0] and
w⃗3=[0.5, 0.5]. Compared to QR-SRM(ϕα=1.0) and QR-
SRM(ϕα=0.2) models, the results of this policy demonstrate
the possibility of increasing the performance w.r.t to one
risk measure at the expense of decreasing the performance
w.r.t to another in our model.

6.3. Windy Lunar Lander

To evaluate our algorithm in a more complex environment,
we utilize the windy Lunar Lander environment. The com-
bination of the larger state and action spaces, along with
the stochasticity in the transitions, makes this environment
particularly challenging for training. As shown in Table 3,
QR-SRM(ϕα=1.0) performs slightly worse than QR-DQN,
but the difference is within a standard deviation. This is
likely due to the state augmentation used in our model. We
also observed unusually low scores for the QR-CVaR al-
gorithm, which were traced back to poor performance in 3
out of 5 seeds. Additionally, QR-iCVaR under-performed
compared to QR-SRM at the same risk levels, suggesting
that using a fixed risk measure, as in Dabney et al. (2018b),
can lead to sub-optimal performance.

Several factors can contribute to these discrepancies be-
tween the objective and the evaluated performance. These
include the use of function approximation for value func-
tions and the inherent stochasticity of the environment. How-
ever, a particularly significant factor for CVaR is the fact
that these objectives focus exclusively on the left tail of the
distribution, overlooking valuable information in the right
tail. As a result, these algorithms are more likely to converge
to sub-optimal policies. This limitation, commonly referred
to as “Blindness to Success” (Greenberg et al., 2022), is a
well-known issue with CVaR-based approaches.

A remedy to this situation, enabled by our model, is as-
signing a weight to the expected value. The results for
the QR-SRM(ϕα⃗3,w⃗3

) model show that this agent can not
only achieve the highest WSCVaRw⃗3

α⃗3
but also improve the

CVaR0.2 and CVaR0.5 without a great impact on the ex-
pected return. The results of this experiment show the im-
pact of having a model with a flexible objective that can
adapt to the environment.

7. Conclusion
In this paper, we introduced a novel DRL algorithm with
convergence guarantees designed to optimize the static SRM.
Our empirical evaluations demonstrate the algorithm’s abil-
ity to learn policies aligned with SRM objectives, achieving
superior performance compared to existing methods in a
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Table 2: The performance of our model against the QR-DQN, QR-CVaR, and QR-iCVaR models. Bold numbers represent the highest
average score with respect to a risk measure. The ± symbol indicates the standard deviation across seeds.

Model CVaR1.0 CVaR0.5 CVaR0.2 ERM4.0 DPRM2.0 WSCVaRw⃗2

α⃗2
WSCVaRw⃗3

α⃗3

QR-SRM(ϕα=1.0) 1.43±0.03 0.03±0.04 -1.36±0.09 -0.37±0.05 0.43±0.02 0.35±0.02 0.04±0.04
QR-CVaR(α=1.0) 1.48±0.07 -0.02±0.10 -1.42±0.21 -0.41±0.13 0.40±0.07 0.35±0.08 0.03±0.10
QR-DQN 1.40±0.09 -0.24±0.17 -1.76±0.27 -0.67±0.19 0.21±0.14 0.16±0.14 -0.18±0.16
QR-SRM(ϕα=0.5) 0.78±0.02 0.27±0.03 -0.44±0.05 0.00±0.04 0.38±0.02 0.29±0.03 0.17±0.03
QR-CVaR(α=0.5) 0.79±0.08 0.28±0.02 -0.41±0.11 0.02±0.05 0.40±0.03 0.31±0.02 0.19±0.03
QR-iCVaR(α=0.5) 0.82±0.17 0.14±0.04 -0.36±0.09 -0.00±0.02 0.32±0.07 0.33±0.07 0.23±0.05
QR-SRM(ϕα=0.2) 0.56±0.08 0.21±0.03 -0.21±0.04 0.05±0.01 0.29±0.05 0.24±0.04 0.17±0.02
QR-CVaR(α=0.2) 0.64±0.06 0.24±0.03 -0.27±0.03 0.05±0.01 0.33±0.03 0.26±0.03 0.19±0.02
QR-iCVaR(α=0.2) 0.40±0.04 0.04±0.01 -0.17±0.03 -0.00±0.01 0.13±0.02 0.16±0.02 0.11±0.02
QR-SRM(ϕλ=4.0) 0.84±0.05 0.28±0.02 -0.37±0.07 0.05±0.03 0.42±0.02 0.35±0.02 0.23±0.03
QR-SRM(ϕν=2.0) 1.01±0.09 0.27±0.02 -0.62±0.14 -0.03±0.06 0.46±0.02 0.36±0.01 0.19±0.03
QR-SRM(ϕα⃗2,w⃗2

) 1.06±0.11 0.26±0.03 -0.57±0.14 -0.01±0.05 0.47±0.03 0.40±0.02 0.24±0.02
QR-SRM(ϕα⃗3,w⃗3

) 1.11±0.08 0.26±0.04 -0.68±0.19 -0.05±0.08 0.48±0.02 0.40±0.03 0.22±0.06

Table 3: The performance of our model against the QR-DQN,
QR-CVaR, and QR-iCVaR models. Bold numbers represent the
highest average score with respect to a risk measure. The± symbol
indicates the standard deviation across seeds.

Model E CVaR0.5 CVaR0.2 WSCVaRw⃗3

α⃗3

QR-SRM(ϕα=1.0) 27.36±12.85 10.17±14.07 -8.07±17.36 9.82±14.75
QR-CVaR(α=1.0) 14.52±1.91 -1.51±3.73 -15.58±5.73 -0.45±3.24
QR-DQN 32.73±8.98 3.79±13.72 -24.79±23.39 4.23±15.99
QR-SRM(ϕα=0.5) 23.25±12.58 4.12±12.64 -12.26±11.67 5.67±12.05
QR-CVaR(α=0.5) 10.77±5.34 -6.26±8.44 -21.07±13.08 -5.08±9.13
QR-iCVaR(α=0.5) 21.72±24.09 -1.33±29.33 -22.37±38.35 -0.02±30.97
QR-SRM(ϕα=0.2) 22.28±12.66 3.37±13.09 -13.51±14.54 4.57±13.53
QR-CVaR(α=0.2) 11.85±6.73 -4.78±6.16 -19.09±4.19 -3.53±5.32
QR-iCVaR(α=0.2) 18.53±22.07 -2.69±27.34 -18.82±31.68 0.04±26.80
QR-SRM(ϕα⃗3,w⃗3

) 31.70±11.21 14.17±13.46 -2.85±20.63 14.57±15.22

variety of risk-sensitive scenarios. The advantage of using
static SRM extends beyond performance; it also enhances
interpretability. We showed that by applying the Decompo-
sition Theorem of coherent risk measures and leveraging
the return distribution available in the DRL framework, we
can identify the specific objective that the optimal policy
is optimizing for. This allows for monitoring the policy’s
behavior and risk sensitivity, and adjusting it if necessary.

A few limitations of our work that can pave the way for
future research are as follows: i) Our value-based method is
suitable for environments with discrete action spaces. The
extension of our algorithm to actor-critic methods can make
our approach available in environments with continuous
action spaces. ii) In this work, we parameterized the re-
turn distribution with the quantile representation. Using
other parametric approximations of the distribution (Dab-
ney et al., 2018a; Yang et al., 2019) or improvements that
have been introduced for the quantile representation (Zhou
et al., 2020; 2021) can potentially improve the performance
of our risk-sensitive algorithm. iii) The algorithm to up-
date the function h, or equivalently the estimation of the
initial state’s return distribution, provides a lower bound for

the objective. In section 6.2, we empirically observed that
our algorithm converges to policies similar to QR-CVaR,
which has stronger convergence guarantees. However, an
algorithm with stronger guarantees for convergence to the
optimal function h can enhance our understanding of static
SRM.

Impact Statement
This work advances Machine Learning by providing a princi-
pled approach to handling worst-case scenarios in sequential
decision-making. We do not foresee any negative societal
impacts. On the contrary, our method can enhance the safety
and reliability of AI systems in high-stakes domains such
as finance and healthcare, where effective risk management
is critical. We believe this contribution supports the devel-
opment of safer and more trustworthy machine learning
applications.
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Bäuerle, N. and Glauner, A. Minimizing spectral risk mea-
sures applied to Markov decision processes. Mathemati-
cal Methods of Operations Research, 94(1):35–69, 2021.
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A. Property of the Closed-form solution
Using the SRM definition from Equation 4, we have

SRMµ(Z) =

∫ 1

0

CVaRα(Z)µ(dα)

(a)
=

∫ 1

0

F−1
Z (α) +

1

α
E
[(
Z − F−1

Z (α)
)−]

µ(dα)

(b)
= E

[∫ 1

0

F−1
Z (α) +

1

α

(
Z − F−1

Z (α)
)−
µ(dα)

]
= E [hϕ,Z(Z)]

where step (a) utilizes the CVaR representation provided in Rockafellar & Uryasev (2000), and step (b) applies Fubini’s
Theorem. Next, we note that hϕ,Z , as defined in Equation 6, is differentiable almost everywhere, with its derivative given by

h′ϕ,Z(z) =

∫
{α:z≤F−1

Z (α)}
1

α
µϕ(dα)

=

∫ 1

FZ(z)

1

α
µϕ(dα) = ϕ (FZ(z)) .

Additionally, the infimum in the concave conjugate ĥϕ,Z(ϕ(u)) = infz (ϕ(u) · z − hϕ,Z(z)) is achieved at any z where
ϕ(u) = h′ϕ,Z(z) = ϕ (FZ(z)), which corresponds to z = F−1

Z (u). Therefore, we obtain∫ 1

0

ĥϕ,Z(ϕ(u))du =

∫ 1

0

ϕ(u) · F−1
Z (u)− hϕ,Z

(
F−1
Z (u)

)
du

=

∫ 1

0

ϕ(u) · F−1
Z (u)du−

∫ 1

0

hϕ,Z
(
F−1
Z (u)

)
du

= SRMϕ(Z)− E [hϕ,Z(Z)]

= 0

B. Proof of Convergence for Inner Optimization
In this section, we aim to demonstrate the convergence of the inner optimization algorithm to the optimal policy associated
with a fixed function hl. Before discussing the main theorem, we must introduce several intermediate results about
partial returns. Recall that J(π, hl) = E [hl (G

π)] +
∫ 1

0
ĥl(ϕ(u))du. Since

∫ 1

0
ĥl(ϕ(u))du = 0, we define the mapping

Vk,l : X × S × C ×A → R as follows:

Vk,l(x, s, c, a) = E [hl (s+ cGk,l(x, s, c, a))] . (17)

Similarly for a policy πl ∈ πM, we define

V πl(x, s, c, a) = E [hl (s+ cGπl(x, s, c, a))] . (18)

The goal is to find an optimal deterministic policy π∗
l ∈ πM in the sense that

V π∗
l (x, s, c, a) = max

πl∈πM

V πl(x, s, c, a). (19)

With ak,l(x, s, c) = aGk,hl
(x, s, c), we have the following recursive property for Vk,l and V πl :

Lemma B.1. For each (x, s, c, a) ∈ X × S × C ×A, we have

Vk+1,l(x, s, c, a) = Exsca [Vk,l (X
′, S′, C ′, ak,l (X

′, S′, C ′))] . (20)

Additionally, for a policy πl ∈ πM, we have

V πl(x, s, c, a) = Eπl,xsca [V
πl (X ′, S′, C ′, A′)] (21)
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Proof. The proof for both equations follows similar steps, so we present the proof only for Vk+1,l. Consider a partial
trajectory that starts with the sample transition (X,S,C,A,R,X ′, S′, C ′, A′) and continues with (Xt, St, Ct, At, Rt)

k
t=0

in which A0 = A′ = ak,l (X
′, S′, C ′) and At ∼ πk−t,l (· | Xt, St, Ct) , t ≥ 1. Since S′ = S + CR and C ′ = γC, we can

write4

Exsca[Vk,l (X
′, S′, C ′, A′)]

= Exsca [E [hl (S
′ + C ′Gk,l (X

′, S′, C ′, A′))]]

= Exsca

[
E

[
hl

(
S′ + C ′

k∑
t=0

γtRt

)
| X0 = X ′, S0 = S′, C0 = C ′, A0 = A′

]]

= Exsca

[
E

[
hl

(
s+ cR+ γc

k∑
t=0

γtRt

)
| X0 = X ′, S0 = S′, C0 = C ′, A0 = A′

]]

= Exsca

[
E

[
hl

(
s+ cR+ c

k+1∑
t=1

γtRt

)
| X1 = X ′, S1 = S′, C1 = C ′, A1 = A′

]]

= E

[
hl

(
s+ c

k+1∑
t=0

γtRt

)
| X0 = x, S0 = s, C0 = c, A0 = a

]
= Vk+1,l(x, s, c, a)

Lemma B.2. For each (x, s, c, a) ∈ X × S × C ×A and return-distribution ηk,l defined by Equation 11, the associated
Vk,l(x, s, c, a) indicates the value of the optimal policy for partial return, i.e.:

Vk,l(x, s, c, a) = max
πl∈πM

Eπl,xsca

[
hl

(
s+ c

k∑
t=0

γtRt

)]
. (22)

Proof. We establish the validity of this lemma through induction on k. The statement holds true for k = 0 with
G0,l(x, s, c, a) = 0. Assuming the statement is true for Vk,l, we leverage the results of Lemma B.1 and the fact that
the policy Gl (ηk,l) selects the action maximizing Vk,l to conclude the validity of the statement for Vk+1,l.

Lemma B.3. For each (x, s, c, a) ∈ X × S × C ×A, it holds that

V π∗
l (x, s, c, a)− εk(x, s, c, a) ≤ Vk,l(x, s, c, a) ≤ V π∗

l (x, s, c, a) (23)

where limk→∞ εk(x, s, c, a) = 0. It also holds that Vk,l(x, s, c, a) ↑ V π∗
l (x, s, c, a).

Proof. Let (Rt)t≥0 be a sequence of rewards in [RMIN, RMAX] for any policy πl. Since hl is a non-decreasing function,
we have

hl

(
s+ c

k∑
t=0

γtRt

)
≤ hl

(
s+ c

∞∑
t=0

γtRt

)
. (24)

Also, we can use the ϕ(0)-Lipschitz property of hl, i.e. hl(u1 + u2)− hl(u1) ≤ ϕ(0)u2, to write

hl

(
s+ c

∞∑
t=0

γtRt

)
− hl

(
s+ c

k∑
t=0

γtRt

)
≤ ϕ(0)c

∞∑
t=k+1

γtRt ≤ ϕ(0)cγk+1GMAX (25)

Combining these results yields the following inequality

V πl
∞ (x, s, c, a)− εk(x, s, c, a) ≤ V πl

k (x, s, c, a) ≤ V πl
∞ (x, s, c, a) (26)

4Note that Ct is a degenerate random variable that only takes the value γt, therefore multiplying a random variable Z by Ct scales
each realization by γt.

13



Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional RL

where εk(x, s, c, a) = ϕ(0)cγk+1GMAX. This shows that limk→∞ εk(x, s, c, a) = 0. Taking the supremum over all
policies and applying Lemma B.2 results in Inequality 23. By setting G0,l(x, s, c, a) = 0 and considering the non-
negativity of rewards, we ensure that Vk,l(x, s, c, a) is increasing with respect to k and therefore we have Vk,l(x, s, c, a) ↑
V π∗

l (x, s, c, a).

Theorem B.4. With πk,l = Gl (ηk,l), it holds that limk→∞ V πk,l = V π∗
l .

Proof. Given that the function hl is non-decreasing and considering the definitions of Vk,l(x, s, c, a) and V πk,l(x, s, c, a),
we can write:

0 ≤ ϕ (1) ≤ E [hl (s+ cGk,l(x, s, c, a))− hl (s+ cGk−1,l(x, s, c, a))]

cE [Gk,l(x, s, c, a)−Gk−1,l(x, s, c, a)]
, (27)

and

0 ≤ ϕ (1) ≤ E [hl (s+ cGπk,l(x, s, c, a))− hl (s+ cGk,l(x, s, c, a))]

cE [Gπk,l(x, s, c, a)−Gk,l(x, s, c, a)]
. (28)

Since Vk,l(x, s, c, a) is increasing w.r.t k, the numerator in Equation 27 is positive and we can conclude that
E [Gk,l(x, s, c, a)] ≥ E [Gk−1,l(x, s, c, a)]. Utilizing Equation 11, we can also infer that

Exsca [E [Gk,l (X
′, S′, C ′, ak,l (X

′, S′, C ′))]] ≥ Exsca [E [Gk−1,l (X
′, S′, C ′, ak−1,l (X

′, S′, C ′))]] . (29)

Now in Equation 28, in order to show that V πk,l(x, s, c, a)− Vk,l(x, s, c, a) ≥ 0 in every state-action, we need to show that
the denominator in this equation is also always positive. With ϵk(x, s, c, a) := E [Gπk,l(x, s, c, a)−Gk,l(x, s, c, a)], we
have

ϵk(x, s, c, a) = E [Gπk,l(x, s, c, a)−Gk,l(x, s, c, a)]

= Exsca [E [R+ γGπk,l (X ′, S′, C ′, ak,l (X
′, S′, C ′))−R− γGk−1,l (X

′, S′, C ′, ak−1,l (X
′, S′, C ′))]]

= γExsca [E [Gπk,l (X ′, S′, C ′, ak,l (X
′, S′, C ′))−Gk−1,l (X

′, S′, C ′, ak−1,l (X
′, S′, C ′))]]

(a)

≥ γExsca [E [Gπk,l (X ′, S′, C ′, ak,l (X
′, S′, C ′))−Gk,l (X

′, S′, C ′, ak,l (X
′, S′, C ′))]]

= γExsca [ϵk (X
′, S′, C ′, ak,l (X

′, S′, C ′))] , (30)

where we use Equation 29 for (a). Given that ϵk(x, s, c, a) is bounded from below, its infimum ϵk := inf(x,s,c,a) ϵk(x, s, c, a)
exists, so we can take infimum from both sides of Equation 30 and replace ϵk(x, s, c, a) with ϵk. This leads to

ϵk ≥ γϵk =⇒ ϵk ≥ 0, (31)

demonstrating that both denominator and numerator in Equation 28 are positive. Therefore, we can prove the theorem using
the Squeeze Theorem and Lemma B.3.

C. Lower Bound for the Objective
In Appendix B, we showed that the fixed point of each distributional Bellman operator T Gl denoted by η∗l and instantiated
as Gπ∗

l can be found and we were able to provide the error bound for each πk,l. Using the fact that
∫ 1

0
ĥl(ϕ(u))du = 0 for

l ∈ N, the update rule for function h in Equation 12 shows

E
[
hl+1

(
Gπ∗

l (X0, 0, 1, aGπ∗
l ,hl+1

(X0, 0, 1))
)]

≥ E
[
hl

(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
.

where a∗l (x, s, c) = a
Gπ∗

l ,hl
(x, s, c) denotes the optimal action when the same function hl is used to estimate Gπ∗

l and
calculate E [hl(·)]. Remember that the return-variable of the optimal policy derived with the fixed function hl and hl+1 is
denoted by Gπ∗

l and Gπ∗
l+1 . Therefore, we have

E
[
hl+1

(
Gπ∗

l+1(X0, 0, 1, a
∗
l+1 (X0, 0, 1))

)]
≥ E

[
hl+1

(
Gπ∗

l (X0, 0, 1, aGπ∗
l ,hl+1

(X0, 0, 1))
)]

=⇒ E
[
hl+1

(
Gπ∗

l+1(X0, 0, 1, a
∗
l+1 (X0, 0, 1))

)]
≥ E

[
hl

(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
,
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and relative to our objective, we can write:

SRMϕ

(
Gπ∗

l

)
= sup

h∈H
E
[
h
(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
≥ E

[
hl

(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
Since the rewards are bounded, both Gπ∗

l and function hl are bounded. Therefore, the monotonic increase of J(π∗
l , hl) =

V π∗
l (X0, 0, 1, a

∗
l (X0, 0, 1)) as l → ∞ provides a lower bound for the objective.

D. Details of Algorithm 2
The quantile regression loss function used in this algorithm helps estimate the quantiles by penalizing both overestimation
and underestimation with weights τ and 1− τ , respectively. The quantile Huber loss function (Huber, 1992) uses the squared
regression loss in an interval [−κ, κ] to prevent the gradient from becoming constant when u→ 0+:

ρκτ (u) =
∣∣τ − δ{u<0}

∣∣Lκ(u) (32)

where the Huber loss Lκ(u) is given by

Lκ(u) =

{
1
2u

2, if |u| ≤ κ
κ
(
|u| − 1

2κ
)
, otherwise . (33)

Furthermore, since function hl is approximated with the quantile representation of G̃ := Gπ∗
l−1 and Equation 6, we need to

show how E [hl(s
′
k + c′kθj(x

′
k, s

′
k, c

′
k, a

′))] is calculated. With zj := s′k + c′kθj(x
′
k, s

′
k, c

′
k, a

′) and θ̃i := F−1

G̃
(τ̂i), we can

write

hl(zj) =

∫ 1

0

F−1

G̃
(α) +

1

α

(
zj − F−1

G̃
(α)
)−

µ(dα)

=
∑
i

(∫ τi

τi−1

F−1

G̃
(α) +

1

α

(
zj − F−1

G̃
(α)
)−

µ(dα)

)

=
∑
i

(∫ τi

τi−1

F−1

G̃
(α)µ(dα) +

∫ τi

τi−1

1

α

(
zj − F−1

G̃
(α)
)−

µ(dα)

)
(a)
=
∑
i

(
θ̃i

∫ τi

τi−1

µ(dα) +
(
zj − θ̃i

)− ∫ τi

τi−1

1

α
µ(dα)

)
. (34)

In this calculation, the integration interval [0, 1] is divided into N intervals [τ0, τ1), [τ1, τ2), · · · , [τN−2, τN−1), [τN−1, τN ].
Therefore, the integrals

∫ τi
τi−1

µ(dα) is calculated on [τi−1, τi), including the lower limit τi−1 and excluding the upper limit

τi. In (a), we used the fact that θ̃i is constant in [τi−1, τi). Also, the first term in the summation can be omitted since it is
constant for all actions.

In this algorithm, it’s also important to highlight the direct relationship between the number of quantiles and the expressive-
ness of SRM. For example, when the return distribution is approximated with N quantiles, the expectation can be estimated
with µ̃N =

∫ 1

1−1/N
1
αµ(dα) = 1 and µ̃j = 0 for 1 ≤ j < N . Similarly, CVaRα for α < 1 can be approximated by setting

µ̃j = 1/α for j = ⌊αN⌋+ 1 and µ̃j = 0 otherwise.

E. Convergence of Algorithm 2
As described in Section 3.3, we parameterize the return distribution using a quantile representation. Specifically, we employ
a quantile projection operator, ΠQ, to map any return distribution η onto its quantile representation with respect to the
1-Wasserstein distance (w1). Therefore, ΠQη = η̂ = 1

N

∑N
i=1 δθi with θi = F−1

η (τ̂i) , τ̂i = (τi−1 + τi)/2, 1 ≤ i ≤ N
corresponds to the solution of the following minimization problem:

minimize w1(η, η
′) subject to η′ ∈ FQ,N
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where FQ,N is the space of quantile representations with N quantiles. Using this definition, Algorithm 2 can be expressed
as iteratively updating

η̂k+1,l = ΠQT Gl η̂k,l.

As previously noted, this process is analogous to the iteration in the QR-DQN algorithm, with two key differences: the
incorporation of risk-sensitive greedy action selection and the use of an extended state space. Consequently, we can leverage
the steps outlined in Bellemare et al. (2023, Section 7.3) to establish the convergence of ΠQT Gl .

To begin, we will demonstrate that T Gl is a contraction mapping. That is, the sequence of iterates defined by ηk+1,l = T Glηk,l
converges to ηπ

∗
l with respect to the supremum p-Wasserstein distance, w̄p, for p ∈ [1,∞]. Here, we assume the existence

of a unique optimal policy π∗
l .5 With this assumption, we leverage the fact that the action gap, GAP(Q)—defined as the

smallest difference between the highest-valued and second-highest-valued actions across all states for a given Q-function—is
strictly positive. By setting ε̄ = GAP(V π∗

l )/2 and using Lemma B.3, we can see that after Kε̄ ∈ N iterations where
Kε̄ := ⌊ln( ε̄

ϕ(0)GMAX
)/ln(γ)⌋, the greedy action in state (x, s, c) becomes the optimal action a∗, and for any a ̸= a∗, we

have:
Vk,l(x, s, c, a

∗) ≥ V π∗
l (x, s, c, a∗)− ε̄

≥ V π∗
l (x, s, c, a) + GAP(V π∗

l )− ε̄

> Vk,l(x, s, c, a) + GAP(V π∗
l )− 2ε̄

= Vk,l(x, s, c, a).

Thus, after Kε̄ iterations, the policy induced by the return distribution becomes the optimal policy. Beyond this point, the
distributional optimality operator transitions to the distributional Bellman operator for the optimal policy, which is a known
γ-contraction with respect to w̄p. Using this result, we conclude that the combined operator ΠQT Gl is a contraction with
respect to w̄∞, as established in Dabney et al. (2018b, Proposition 2).

F. Additional discussion on Time and Dynamic Consistency
In this section, we need to introduce new notations to discuss the flow of information. Suppose we have a sequence of
real-valued random variable spaces denoted as Z0 ⊂ · · · ⊂ ZT ,Zt := Lp (Ω,Ft,P). Here, Zt : Ω → R represents an
element of the space Zt.

Moreover, let us define the preference system {ρt,T }T−1
t=0 as the family of preference mappings ρt,T : ZT → Zt, t =

0, . . . , T − 1. The conditional expectation denoted by E [· | Ft] is an example of such mappings. With these notations, our
optimization problem defined in Equation 1 can be written with ρ = ρ0,T and Zπ = Zπ

0,T , where Zπ
t,T ∈ ZT denotes the

cumulative reward starting from time t. The following definitions help us discuss the connection between the risk measure ρ
and the policy π:

Definition F.1 (Time-consistency). An optimal policy π∗ = (a∗0, . . . , a
∗
T ) is time-consistent if for any t = 1, . . . , T , the

shifted policy −→π ∗ = (a∗t , . . . , a
∗
T ) is optimal for

max
π∈π

ρt,T
(
Zπ
t,T

)
. (35)

Definition F.2 (Dynamic-consistency). The preference system {ρt,T }T−1
t=0 is said to exhibit dynamic consistency if the

following implication holds for all 0 ≤ t1 < t2 ≤ T − 1:

ρt2,T (Z) ⪰ ρt2,T (Z ′) =⇒ ρt1,T (Z) ⪰ ρt1,T (Z ′) Z,Z ′ ∈ ZT , 0 ≤ t1 < t2 ≤ T − 1. (36)

Additionally, this preference system is said to exhibit strict dynamic consistency if the following implication holds:

ρt2,T (Z) ≻ ρt2,T (Z ′) =⇒ ρt1,T (Z) ≻ ρt1,T (Z ′) Z,Z ′ ∈ ZT , 0 ≤ t1 < t2 ≤ T − 1. (37)

Note that dynamic-consistency is a property of a preference system and time-consistency is a property of a policy w.r.t a
preference system. Although some authors (e.g. Ruszczyński (2010)) have used the term ”time-consistency” for preference

5For cases with multiple optimal policies in the risk-neutral setting, refer to Bellemare et al. (2023, Section 7.5). Extending this result
to the risk-sensitive case is straightforward.
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systems, in this context, we maintain the distinction between these two terms. The primary rationale behind this distinction
is that using a dynamically consistent preference system implies a time-consistent policy only when the optimal policy
is unique. In scenarios with multiple optimal policies, additional conditions must be satisfied (Shapiro et al., 2014).
Nonetheless, employing these preference systems has been a widely adopted approach in the RSRL literature to ensure the
time-consistency of the optimal policy6. To understand the necessary properties of a dynamically consistent preference
system, we require additional definitions:

Definition F.3 (Recursivity). The preference system {ρt,T }T−1
t=0 is said to be recursive if

ρt1,T (ρt2,T (Z)) = ρt1,T (Z) Z ∈ ZT , 0 ≤ t1 < t2 ≤ T − 1. (38)

For instance, Kupper & Schachermayer (2009) show that the only law invariant convex risk measure that has the recursion
property ρ (ρ(· | G)) = ρ(·) for G ⊂ F ,G ̸= F is the Entropic risk measure:

ρ(Z) =
1

γ
logE[exp(γZ)], γ ∈ [0,∞]. (39)

Therefore, using the above-mentioned ρ yields a recursive preference system. The Entropic risk measure is monotone,
translation-invariant, and convex. However, it does not have the positive homogeneity property, so it is not suitable for
applications in which this property is essential. Nevertheless, the risk measures ρ(·) = E(·) and ρ(·) = ess sup(·), which
are the boundary cases of the Entropic risk measure with γ = 0 and γ = ∞, have the positive homogeneity property and
therefore are coherent risk measures.

Definition F.4 (Decomposability). The preference mappings ρt,T are considered to be decomposable via a family of
one-step mappings ρt : Zt+1 → Zt if they can be expressed as compositions

ρt,T (Z) = ρt (ρt+1 (· · · ρT−1(Z))) , Z ∈ ZT . (40)

It is easily seen that the preference mappings of a recursive preference system, such as the one with the Entropic risk measure,
are also decomposable. The inverse, however, is not always true and a set of decomposable preference mappings constitute
a recursive preference system only if their corresponding one-step mappings are translation-invariant and ρt(0) = 0 for
t = 0, . . . , T . For instance, a convex conditional risk measure such as ρt = CVaRα(· | Ft) can be used as the one-step
mapping and establish a decomposable and recursive preference system7. At last, in both of these cases, whether the
preference mappings of a recursive preference system or the one-step mappings of a decomposable preference mapping are
monotone, the preference system is dynamically consistent.

As mentioned before, the dynamic consistency of the preference system only implies the time-consistency of a unique
optimal policy. To guarantee the time-consistency of all optimal policies, Shapiro & Ugurlu (2016) shows that the preference
system has to be strictly dynamically consistent. This requires the preference mappings of a recursive preference system or
the one-step mappings of a decomposable preference mapping to be strictly monotone, i.e, the following implication must
hold:

Z ≻ Z ′ =⇒ ρt,T (Z) ≻ ρt,T (Z ′) , Z, Z ′ ∈ ZT .

The Spectral risk measure is an example of strictly monotone preference mappings only if the risk spectrum ϕ(u) is positive
on the interval (0, 1). Consequently, CVaRα is not strictly monotone for α ∈ (0, 1) and we cannot deduce that, for the
preference system characterized by nested Conditional Value-at-Risk, every optimal solution of the corresponding reference
problem is time-consistent. An easy way to ensure that ϕ(u) =

∫ 1

u
µ(dα) > 0 for u ∈ (0, 1) is to check whether µ(dα)|α=1

is non-zero or not. In other words, if the risk measure assigns a non-zero weight on the expectation (CVaR1), the resulting
SRM is strictly monotone.

The decomposition theorem shows that the preference mappings ρt,T can also be provided for SRM. It also shows that these
preference mappings are strictly monotone if the initial risk measure is a strictly monotone SRM. This property is evident
since for α = 1, ξα and consequently αξαt is also 1. Therefore, the weight of CVaR1 in the preference mappings would

6In these works, a set of dynamic programming equations are defined and the optimal policies serve as a solution to these equations,
which ensure the time-consistency. Additional details on this topic can be explored in the work of Shapiro & Pichler (2016).

7These risk measures are also called Nested Risk Measures in the literature
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also be non-zero. Intuitively, if the risk measure takes into account the entire distribution to calculate the risk-adjusted value,
i.e. has a non-zero weight for the expected value, the resulting preference mappings also have this property.

Additionally, the goal of analyzing the evolution of risk preferences over time can be achieved with the preference mappings,
without the need for deriving the one-step mappings. The intermediate random variable ξt,t−1 in the one-step mappings
shows how the risk preference at time t changes compared to the previous risk preference at time t − 1, however, ξαt in
the decomposition theorem shows how the risk preference at time t changes compared to the initial risk preference. For
example, the CVaR risk level at time t, αt, can be written as both αt−1ξt,t−1 or αξt. Similarly, in the CVaR case, the risk
parameter Bt+1 can be written as both (Bt −Rt)/γ or (B0 − St)/Ct.

G. Proof of Theorem 5.1
For general distributions, we have ξα(z) = 1/α for z < λα and ξα(z) = 0 for z > λα. To discuss the value of ξα(z) when
z = λα, let us consider two cases based on the continuity of FG(z) at z = λα, i.e, whether pG(λα) = 0 or pG(λα) > 0.
For the first case, we simply have

ξα(z) =

{
1/α if z ≤ λα

0 if z > λα
(41)

Since G is a convex combination of st + ctGt, we know that pG(λα) = 0 implies pGt
((λα − st)/ct) = 0. Therefore, we

have:

ξαt = E [ξα | Ft]

=
1

α
E
[
1{st+ctGt≤λα}

]
=

1

α
FGt(

λα − st
ct

)

=⇒ αξαt = FGt
(
λα − st
ct

) (42)

For the second case where pG(λα) > 0, we use the fact that E [ξα] = 1 to write ξα(λα) as a function of FG (λα) and
pG(λα):

ξα(z) =


1/α if z < λα

(1− 1
α (FG (λα)− pG(λα)))/pG(λα) if z = λα

0 if z > λα

(43)

Note that the set {z < λα} can be empty, especially for small α. In this case, ξα(λα) = 1/pG(λα) would be the only
non-zero ξα(z). Using this information, we can calculate ξαt :

ξαt = E [ξα | Ft]

=
1

α
· E
[
1{st+ctGt<λα}

]
+

1− 1
α (FG (λα)− pG(λα))

pG(λα)
· E
[
1{st+ctGt=λα}

]
=

1

α
(FGt

(
λα − st
ct

)− pGt
(
λα − st
ct

)) +
1− 1

α (FG (λα)− pG(λα))

pG(λα)
· pGt

(
λα − st
ct

)

=
1

α
FGt

(
λα − st
ct

)− 1

α
pGt

(
λα − st
ct

) ·
(
1− α− (FG(λα)− pG(λα))

pG(λα)

)
=

1

α
FGt

(
λα − st
ct

)− 1

α
pGt

(
λα − st
ct

) · FG(λα)− α

pG(λα)

=⇒ αξαt = FGt
(
λα − st
ct

)− pGt
(
λα − st
ct

) · FG(λα)− α

pG(λα)
(44)

Notice that this can also be simplified to

αξαt = FGt(
λα − st
ct

) (45)
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if FGt
(z) does not have a discontinuity at z = λα−st

ct
.

In the DRL framework, only estimates of the return-distributions are available. When estimating the distribution with the
Quantile representation, it’s easy to see that λα = θi for τi−1 ≤ α < τi, so pG(λα) = 1/N . If (λα − st)/ct is equal to any
of the estimated θt,i, we have pGt

((λα − st)/ct) = 1/N and αξα can be estimated with

αξαt = FGt
(
λα − st
ct

)− (FG(λα)− α).

Otherwise, we have pGt((λα − st)/ct) = 0 and αξα can be estimated with Equation 45.

H. Examples for Calculating the Intermediate Risk Preferences
Example 2. Suppose that the quantiles of G and Gt, denoted by θ and θt, are given as in the table below. Also suppose that
st = 5, ct = 0.8, and we are interested in the following risk measure at the initial state:

ρ(G) = 0.6 · CVaR0.25(G) + 0.4 · CVaR0.8(G).

Table 4: The quantiles of G and Gt, and the dual variables ξ0.25 and ξ0.8 to calculate ρ(G)

τ̂ θ ξ0.25 ξ0.8 θt

5% 7 4 1.25 5
15% 9 4 1.25 6
25% 12 2 1.25 8
35% 20 0 1.25 14
45% 21 0 1.25 15
55% 27 0 1.25 17
65% 30 0 1.25 21
75% 32 0 1.25 25
85% 39 0 0 28
95% 46 0 0 35

For α = 0.25, CVaRα and λα are 8.8 and 12. For α = 0.8, these values are 19.75 and 39. Now we can use Equation 45 to
calculate the αξαt values.

0.25ξ0.25t = FGt
(
12− 5

0.8
) = FGt

(8.75) = 0.3,

0.8ξ0.8t = FGt
(
39− 5

0.8
) = FGt

(42.5) = 1.0.

With ξ0.25t = 0.3/0.25 = 1.2 and ξ0.8t = 1.0/0.8 = 1.25, we can see that at time t, the risk measure changes to

ρξ(Gt) = 0.59 · CVaR0.3 (Gt) + 0.41 · CVaR1.0 (Gt) .

where ξ = 0.6 · 1.2 + 0.4 · 1.25 = 1.22.

Example 3. In this example, we provide an intuition behind the computation of intermediate risk preferences in the
Mean-reversion Trading environment. To start, let’s examine a sample trajectory within our environment, where we employ
our model optimized for CVaR0.5. The details of this trajectory can be found in Table 5. In Figure 6(a), we also present the
return distribution G(xt, st, ct, at) at each time step t. These distributions characterize the agent’s future reward when it
begins in the state-action pair (xt, st, ct, at) at time t and follows the optimal policy.

In our model, the risk preference of the agent chosen at time 0, which is associated with function h, remains constant
throughout the trajectory. For instance, in our specific scenario with λ0.5 = 0.874, the agent’s action selection is based on
the average return below this value, corresponding to the 0.5-quantile of the return distribution at the initial state. In order to
apply this risk preference in all subsequent states, we need to align the return distribution in those states with the agent’s
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Figure 5: The Quantile function and the CDF of G (black) and Gt (blue) in Example 2

Table 5: The states and actions of a single trajectory in our algorithmic trading environment

t 0 1 2 3 4 5 6 7 8 9 10

Pt 1.000 0.606 0.768 1.053 0.796 0.934 0.569 0.636 0.238 0.698 0.870
qt 0.000 -0.400 1.600 1.800 -0.200 0.200 0.600 1.000 0.400 0.800 0.200
st 0.000 0.399 -0.820 -0.971 1.053 0.746 0.390 0.175 0.529 0.440 0.962
ct 1.000 0.990 0.980 0.970 0.961 0.951 0.941 0.932 0.923 0.914 0.904
at -0.400 2.000 0.200 -2.000 0.400 0.400 0.400 -0.600 0.400 -0.600 0.000
rt 0.399 -1.232 -0.154 2.086 -0.319 -0.374 -0.228 0.380 -0.096 0.571 0.000
αt 0.500 0.168 0.355 0.083 0.089 0.147 0.544 0.702 0.819 0.084 0.000

perspective at the initial time. This alignment is achieved by scaling the return distribution by ct and adding st, as illustrated
in Figure 6(b).

Now we can see that the value λ0.5 = 0.874 corresponds to a different quantile of the return distribution in subsequent
states. For instance, action selection w.r.t the 0.5-quantile of the return distribution at time 0 shifts to 0.168-quantile of the
return distribution at time 1. This mechanism enables us to observe how the agent’s risk preference evolves over time. Here,
we demonstrated the process for a single α, but more complicated SRMs follow similar steps. The only additional step
would be the calculation of the weight of each component of the risk measure, similar to the example in Appendix 2.
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Figure 6: Figure 6(a) and 6(b) illustrate the CDF of G(xt, st, ct, at) and st + ctG(xt, st, ct, at) for each state-action pair in a trajectory.
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I. Experiments with number of Quantiles
Due to the approximation of the probability measure µ, an important question arises: Can our model find a policy that
maximizes the expected return, the primary objective of the risk-neutral QR-DQN algorithm? To address this question, we
conducted a comparison of the expected return produced by our model under varying quantile numbers (N ), with µ̃N set to
1, in the mean-reversion trading example. The results of this experiment, presented in Figure 7(a), demonstrate that as the
number of quantiles increases, our model not only matches the performance of the risk-neutral algorithm but surpasses it,
yielding superior expected returns. Furthermore, in Figure 7(b), we observe that the improvement extends beyond expected
returns. The policy derived from our algorithm consistently attains higher CVaRα values for all α ∈ (0, 1].
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Figure 7: Figure 7(a) displays the distribution of Cumulative Discounted Rewards for policies with different number of quantiles. The
solid lines in this figure represent E [G]. Figure 7(b) compares the performance of QR-SRM(α=1) against QR-DQN, both with 200

quantiles, w.r.t to CVaRα for all α ∈ (0, 1].

However, this enhanced performance comes at a cost. When normalizing all models’ scores with the QR-DQN(N=50) score,
as depicted in Figure 8(a), all models reach an equivalent performance level within the same number of steps8. Yet, this
figure can be misleading since the time of action selection at each step increases quadratically with the number of quantiles.
Specifically, for an action space size denoted as A, the QR-DQN model’s action selection requires O(AN) operations, in
contrast to our model, which requires O(AN2) operations. Figure 8(b) presents the score plotted against the training time
normalized to the training time of the QR-DQN(N=50), revealing that transitioning from 50 quantiles to 200 has a less
pronounced impact on the QR-DQN model compared to our model.

0 100 200 300 400 500
Step (Thousands)

−100%

−75%

−50%

−25%

0%

25%

50%

75%

100%

125%

N
or

m
al

iz
ed

 S
co

re

QR-DQN(N=50)
QR-DQN(N=200)
QR-SRM(N=200)
QR-SRM(N=100)
QR-SRM(N=50)
QR-SRM(N=30)
QR-SRM(N=10)

(a)

0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250% 275% 300%
Normalized Time

−125%

−100%

−75%

−50%

−25%

0%

25%

50%

75%

100%

125%

N
or

m
al

iz
ed

 S
co

re

QR-DQN(N=50)
QR-DQN(N=200)
QR-SRM(N=200)
QR-SRM(N=100)
QR-SRM(N=50)
QR-SRM(N=30)
QR-SRM(N=10)

(b)

0 50 100 150 200 250 300 350 400 450 500
Step (Thousands)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
Ab

so
lu

te
 E

rro
r

QR-SRM(N=200)

(c)

Figure 8: Figure 8(a) and 8(b) displays the moving expected reward of our model and the QR-DQN model with different numbers of
quantiles, plotted against the number of steps and time. Figure 8(c) shows the mean absolute error between consecutive estimations of the
return distribution G(x0, 0, 1, a

∗
0).

In our algorithm, the estimation of function h is updated periodically. This estimation is directly linked to the estimation of

8Each step corresponds to a single interaction of the agent with the environment.

21



Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional RL

G(x0, 0, 1, a
∗
0), making the convergence of this return distribution a useful indicator for the convergence of the function h.

Figure 8(c) visualizes this convergence, presenting the mean absolute error between consecutive estimations of the return
distribution.

J. Details of the Environments
J.1. American Put Option Trading

In this environment, we assume that the price of the underlying asset follows a Geometric Brownian Motion, characterized
by the differential equation dPt = ζPtdt+ σPtdWt, where ζ = −0.3 is the drift, σ = 0.3 is the volatility, the initial price
is P0 = 1, and Wt is a standard Brownian motion. The strike price of the put option is assumed to be K = 1. At each time
step, the agent can either exercise the option and receive rt = max{0,K − Pt} or hold the option to receive a reward at
future steps. At maturity, if the option hasn’t been exercised yet, the agent automatically receives rT = max{0,K − PT }.

J.2. Mean-reversion Trading Strategy

In this algorithmic trading framework, the asset price follows an Ornstein-Uhlenbeck process, characterized by the differential
equation dPt = κ(ζ − Pt)dt+ σdWt, where ζ = 1 is the long-term mean level, κ = 2 determines the speed of reversion
to mean. At each time step t = 0, · · · , T − 1, the agent takes an action at ∈ (−amax, amax), corresponding to trading
quantities of the asset and changes its inventory qt ∈ (−qmax, qmax). The reward is defined as rt = −atPt − φ(at)

2 for
0 ≤ t ≤ T − 2 and rT−1 = −aT−1PT−1 − φ(aT−1)

2 + qTPt − ψq2T for the final time step. Here, φ = 0.005 represents
the transaction cost and ψ = 0.5 signifies the terminal penalty. In our setup, the agent faces penalties for holding any assets
at the final time step T . Consequently, the reward at time step T − 1 has an additional term for the agent’s inventory at time
step T . In our example, we consider T = 10, qmax = 5, amax = 2, γ = 0.99, and discretize the action space into 21 actions.

J.3. Windy Lunar Lander

The Lunar Lander environment is a classic rocket trajectory optimization problem, involving an 8-dimensional state space and
four actions: firing the left or right orientation engines, firing the main engine, or doing nothing. To introduce stochasticity,
we enable the wind option. The objective is to guide the lander from the top of the screen to the landing pad. Successful
landings yield around 100–140 points. If the lander moves away from the pad, it loses points, while a crash results in an
additional penalty of -100 points. Landing safely adds a bonus of +100 points, and each leg that makes contact with the
ground earns +10 points. Firing the main engine incurs a penalty of -0.3 points per frame, while firing the side engines costs
-0.03 points per frame.

K. Implementation details
This section provides an overview of the implementation details of our model. We adopt the single-file implementation of
RL algorithms from CleanRL (Huang et al., 2022) for clarity. In this approach, the model and its training are encapsulated
within a single file. The code for the project is available at https://github.com/MehrdadMoghimi/QRSRM.

Table 6: Default hyperparameters in different models

Hyperparameter Value

Learning Rate 2.5e-4
Discount Factor (γ) 0.99

Batch Size 256
Number of Quantiles 50

The repository contains four Python files for each algorithm discussed in section 6 and Appendix I. The qrsrm.py file
defines the state-action value function with a feed-forward network that takes (X,S,C) as input and outputs a N × A
dimensional vector representing the quantile function of all actions. This neural network comprises three hidden layers,
each with 128 neurons. The value function is similar across other files, with the only difference being their input value,
which can be (X) in qrdqn.py and qricvar.py or (X,B) in qrcvar.py.
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In qrcvar.py and qricvar.py, the variable alpha determines the risk preference of the agent. In qrsrm.py, the
user can choose between different risk measures with the risk-measure variable. The value of CVaR, WSCVaR, Dual,
and Exp for this variable is associated with the CVaR, Weighted sum of CVaRs, Dual Power and Exponential risk measures.

The number of timesteps to train each algorithm is determined by total-timesteps variable. A fraction of these
timesteps is allocated to ϵ-greedy exploration and the rest is allocated to learning the value function accurately. Also,
in qrsrm.py and qrcvar.py, the estimation of function h and target value b needs frequent updating. The value of
variables h frequency and b frequency in these files determine the update frequency for these estimations. Lastly,
techniques such as Replay Buffers and Target Networks are employed to stabilize the training process for all of the
algorithms.

The custom environments used in our experiments are available in the custom envs.py file. We implemented the
American Option Trading and Mean-reversion Trading environments using the Gymnasium (formerly OpenAI Gym)
package (Towers et al., 2023). This package allows for the definition of the state space, action space, and environment
dynamics with simple functions. The primary function is the step function, which takes an action as input and outputs the
reward and the next state based on the current state.

The state space augmentation for QR-SRM and QR-CVaR models is also defined using two environment wrappers. These
wrappers automatically store the target value B or the accumulated discounted reward S and the discount factor C for a
trajectory. The key advantage of these wrappers is their compatibility with any environment available in the Gymnasium
package.
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