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a b s t r a c t

This paper introduces a novel framework to assess and manage systemic risk in a
multi-layer financial network by taking advantage of reinforcement learning (RL). The
reduction of systemic risk in the financial network is achieved by applying the deep
deterministic policy gradient algorithm (DDPG) to reorganize the interbank lending
structure of the network into an orientation that better mitigates the spread of con-
tagion. The reorganization procedure itself was constrained in order to preserve the
balance sheet of every bank. To achieve this, we develop a constraint DDPG model
consisting of a safety layer coupled with a linear mapping to satisfy the total borrowing
and lending amounts of each bank. Moreover, we propose a new multi-layer DebtRank
(DR) algorithm taking into account how contagion spreads from one layer to another.
Testing against networks of varying size and depth, our DDPG agent was able to reduce
systemic risk levels by significant amounts, suggesting the feasibility and utility of
employing RL in managing systemic risk through aiding regulatory policy design. We
observe an increase in sparsity and an increase in network dissimilarity between the
different layers of the network after optimization.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A key property of a financial network is its interconnectedness. This interconnectedness, however, is a mechanism for
mplifying shocks and distress, leading to contagion and potentially resulting in catastrophic failure of the network. The
isk of financial collapse due to the failure of some portion of the financial network leading to economic decline is called
ystemic risk. The importance of financial stability and systemic risk in the financial sector has been underlined after the
lobal financial crisis, and the monitoring and regulation of systemic risk have become a major concern for regulators,
overnments, and financial institutions. The insights gained from the crisis include the importance of interconnectedness
mong financial institutions and markets and the necessity of adopting a system-wide view of stability and risk. One can
et useful insights from analogous problems related to the large-scale (in)stability of systems with many interconnected
omponents and feedback loops in other disciplines. It is important to understand the mechanisms underlying systemic
isk and financial instability, metrics for identifying sources of systemic risk, and tools for monitoring these sources in
ractice.
A high level of systemic risk can have several effects on members of the financial system. These effects include impacts

n sovereign credit ratings [1–3], impacts on hedge fund returns [4], and reducing the benefits of diversification in
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ortfolios [5,6]. In this paper, we explore how RL can be used to reorganize the connections of a multi-layer financial
etwork in order to reduce the overall systemic risk in the network.
Complex networks provide a convenient representation of the financial system. Typically, the nodes in the network

epresent the banks or financial institutions, while the edges connecting the nodes represent the relationship between the
inancial actors. Such a natural representation of the financial system has spurred the development of models adopting
his framework to study systemic risk in financial systems [7–13]. The structure of the network has been intimately tied
o the levels of systemic risk present in the network [14–17]. This idea has introduced a line of study investigating how
e can capitalize on the connection between systemic risk and the network structure to reduce systemic risk. Poledna
nd Thurner [18], Poledna et al. [19] implement a systemic risk tax incentive using agent-based modelling and observe
reduction in systemic risk in the self-organized network. Diem et al. [20] reduce systemic risk in a direct-exposure
etwork using mixed-integer linear programming to reorganize the network. They also observe that the reorganization of
he direct exposure network can yield lower levels of systemic risk when compared to Basel III-like equity increases. They
ighlight some network characteristics expressing low levels of systemic risk, suggesting that these characteristics should
e taken into account when designing policies for tackling financial market stability. Another study by Pichler et al. [21]
eorganizes an overlapping bond portfolio network, represented by a bipartite network, in a similar manner by framing
he reorganization problem as an optimization problem.

In order to manage systemic risk, we need to be able to measure systemic risk. In a network setting, systemic risk
an be measured by using network-based measures [7,22,23]. The seminal work by Eisenberg and Noe [7] introduces
clearing algorithm while also providing an estimate of the systemic risk based on the number of ‘‘waves’’ of defaults
equired for a firm to fail in the algorithm. The approach taken by Furfine [22] uses interbank payment data to simulate
he knock-on effects of the failure of a single firm. These measures do not consider how distress prior to default can lead
o contagion. The popular DR measure by Battiston et al. [24] tackles this problem by taking into account the build-up
nd propagation of distress and its effect on the equity of banks in the network. The DR algorithm measures the systemic
isk of financial institutions by propagating their initial distress through the network and calculating the induced loss as
result. This algorithm was extended by Bardoscia et al. [25] to allow banks to propagate distress more than once and
y Silva et al. [26] to consider a feedback mechanism between the real and financial sector.
In reality, there are many different types of financial products and contracts. The failure of an institution to honour one

ype of contract is not always felt in isolation. In fact, Montagna and Kok [27], Poledna et al. [28], Cuba et al. [29] find that
nly considering the systemic risk in single-layer networks severely underestimates the total systemic risk of a financial
ystem. Poledna et al. [28] extend the DR measure to the multi-layer case, allowing for the comparison of systemic risk
etween layers as well as the systemic risk of the combined network of projected layers. Poledna et al. [30] modify the DR
lgorithm to account for overlapping portfolios in bipartite networks, and hence account for indirect exposures. Cao et al.
31] extend the DR algorithm to the multi-layer case, accounting for investments of debt and equity between financial
nstitutions.

Recently, there have been efforts to apply machine learning techniques to improve systemic risk assessment. Li et al.
32] use support vector machine to predict systemic risk in the Chinese banking system. Cerchiello et al. [33] use financial
witter and market data in predicting when shocks to the financial system might occur. Using algorithmic text analysis,
yman et al. [34] use financial reports and news articles to measure relative sentiment shifts based off excitement and
nxiety summary statistics, finding potential in predicting increases in distress in the financial system. Most recently, So
t al. [35] proposed the use of Latent Dirichlet Allocation on financial news article data, allowing real-time prediction of
ystemic risk. For a more detailed review of machine learning applications in systemic risk, see the survey by Kou et al.
36].

Although there are a number of studies on machine learning applications in systemic risk, currently, only a handful of
tudies have adapted RL techniques to a financial network setting. Liu et al. [37] make use of a multi-agent model based
n temporal difference RL to replicate lending and borrowing dynamics. In particular, RL here is used to help decide each
anks’ counterparties. Their work demonstrates how the risk preferences of individual banks can assemble networks that
re less at risk for contagion. Although not modifying the interbank relationships themselves, Petrone et al. [38] proposes
framework in which an RL agent provides capital investments for different banks in the network, replicating the capital

njections given by the government to increase the resilience of banks and minimize losses in the network.
In our study, we take a different approach to reorganizing the financial network by using RL. The main goal of this

aper is to construct a RL framework to minimize systemic risk in a multi-layer financial network. In pursuing this goal,
e made the following contributions. First of all, we develop the constraint DDPG algorithm to reorganize the interbank

ending structure of a multi-layer network by modifying the classical DDPG algorithm, proposed by Lillicrap et al. [39]. To
inimize the effects of network reorganization on the balance sheets of each bank in the network, we incorporate a safety

ayer inspired by Dalal et al. [40]. The flexibility that is offered by RL allows us to easily extend the optimization procedure
rom the single layer case to the multi-layer case circumventing the technical optimization challenges noted by Diem et al.
20]. Second, we propose a new multi-layer DR to measure systemic risk in our networks. Both optimization procedures in
iem et al. [20] and Pichler et al. [21] were done by minimizing the total direct impact, an approximation of the DR. Using
L we directly incorporate the DR measure into the model’s objective via the reward function. The types of assets used in
his paper will have different maturities. Therefore, to account for how contagion might spread in a multi-layer network
f loans with differing maturities, we propose a modified DR measure. We further highlight the versatility of using RL by
2
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onsidering preferential reduction in DR through the modification of the reward function to account for highly leveraged
anks.
The remainder of this paper is organized into 6 sections. In Section 2 we outline how we model our multi-layer complex

etwork and present both the conventional DR and our proposed multi-layer DR measures. In Section 3 we detail the
mplementation of our RL agent in the context of reducing systemic risk in a multi-layer complex network environment.
n Section 4 we outline how to constrain the action of the RL agent to preserve specific properties of the complex
etwork and also present the experimental details for the single-layer and multi-layer case along with the parameters and
yperparameters used in our model. In Section 5 we present the results and discussion. Finally, in Section 6 we conclude
he study and present some possible extensions to our work.

. Model

.1. Multi-layer complex networks

We modelled the interbank liability network as a multi-layer weighted directed graph with M = {G, Y } where
G = {(V , Eα) | α ∈ {1, 2, . . . ,M}} is the set of graphs in the multi-layer network and Y = {α | α ∈ {1, 2, . . . ,M}} is
the index set for the different layers of the multi-layer network. The set of nodes in the multi-layer network is denoted
by V = {i | i ∈ {1, 2, . . . ,N}}. Eα = {(i, j) | i, j ∈ V , i ̸= j} denotes the set of edges connecting nodes V in layer α. Note
that each layer contains the same set of nodes and the only difference between the layers is the topology of the edges.

In the context of financial networks, each node in the graph will represent a bank. The directed edge from bank i to j
in layer α represents the loan of bank i to bank j in layer α. This lending amount is denoted by Lα

ij . In the case that bank
j defaults, Lα

ij also represents the impact of bank j on bank i as this is the amount lost by bank j. We define the adjacency
matrix of the graph as Q and denote its elements using

Q α
ij =

{
1 if bank i lends to bank j in layer α

0 Otherwise
(1)

Using the methods described in Li et al. [10] and Maeno et al. [41], we can simulate a liability interbank network Lα

ith parameters N, A, θα, r, β , and γ representing the total number of banks, the total asset in the network, the interbank
oan ratio, the networks’ degree heterogeneity, the cash deposit ratio, and the equity capital ratio, respectively. Then the
ending amounts that appear on the balance sheet are calculated as

Lα
ij =

Q α
ij (k

α
out,ik

α
in,i)

r∑N
i=1

∑N
j=1 Q

α
ij (k

α
out,ik

α
in,i)r

θαA (2)

where kα
out,i and kα

in,i are the outgoing degree and incoming degree of the ith bank in the α layer, respectively. Once the
lending amounts are defined for every bank, we can then calculate the rest of the balance sheet. To calculate the balance
sheets of the banks, we define the following, let θ =

∑M
α=1 θα , li =

∑M
α=1

∑N
j=1 L

α
ij , bi =

∑M
α=1

∑N
i=1 L

α
ij , and TL =

∑N
i=1 li

here θ is the total proportion of the assets used for lending, li is the total lending amount of bank i, bi is the total
orrowing of bank i, and TL is the total amount used for lending in the network respectively. The balance sheet can then
e calculated using the following set of equations

oi = max(bi − li, 0)+
[
[(1− θ )− β(1− γ )+ βθ ]A−

N∑
i=1

max(bi − li, 0)
]
li/TL (3)

ei =
γ (li + oi)− βγ bi

1+ βγ − β
(4)

di =
(1− γ )(li + oi)− βbi

1+ βγ − β
(5)

ci =
β(1− γ )(li + oi)− βbi

1+ βγ − β
(6)

where oi, ei, di, and ci are the other assets, equity, deposits, and cash of bank i. Then the total assets on bank i’s balance
sheet is ai = ci + li + oi and by basic accounting principles ai = di + bi + ei. The simulated balance sheet for each bank in
the network can be found in Fig. 1.

2.2. DebtRank

We will be measuring the systemic risk contribution of banks in the complex network in terms of their DR. The
algorithm used to calculate the DR was first introduced by Battiston et al. [24] and was extended to multi-layer networks
by Poledna et al. [28]. It should be noted however that Poledna et al. [28] do not take into account how distress might
propagate between the different layers. In our study, we introduce our own mechanism for contagion to spread between
3
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Fig. 1. Balance sheet of the i-th bank for all layers of the multi-layer network.

the different layers of the multi-layer network. For the completeness of the paper, we first provide a brief introduction
of the conventional DR for a single-layer network. The impact of bank i on bank j can be defined by

Wij = min
[
1,

Lji
ej

]
(7)

here Lji is the lending amount from bank j to bank i and ej is the equity of bank j. If Lji < ej then the impact of bank i
n bank j is Lji/ej. Therefore, given an adequate level of ej, the impact of bank i on bank j can be mitigated by the buffer
j. Given a sufficiently low ej, the impact of bank i on bank j could lead to the default of bank j. For each bank, we define
wo state variables. Let hi ∈ [0, 1] represent the level of distress of bank i and si ∈ {U,D, I} be a discrete variable taking
three possible states U,D, and I , representing the undistressed, distressed, and inactive states, respectively. The dynamics
of hi follows

hi(t) = min
{
1, hi(t − 1)+

∑
j|sj(t−1)=D

Wjihj(t − 1)
}

(8)

si(t) =

⎧⎨⎩
D if hi(t) > 0; si(t − 1) ̸= I
I if si(t − 1) = D
si(t − 1) otherwise

where hi is calculated for all i at each time step. The DR of a bank i is calculated after some finite time T has passed or
once all the banks are in state U or I . The DR Ri of a bank i can be calculated as

Ri =
∑

j

hj(T )vj − hi(1)vi (9)

where vi is the relative economic value of each bank defined as

vi =
li∑N
k=1 lk

∀i ∈ V (10)

The relative economic value of each bank is the contribution of bank i’s lending relative to the entire interbank network.
When a bank is in distress, some or all of its value is lost (the bank is considered in default if all of its value is lost).
Therefore, the DR can be interpreted as the relative economic value of the network that is potentially lost due to the
distress caused by bank i propagating through the network. Given that the DR is dependent only on Lij and ej, we define
i(L, e) = Ri for a given liability network L and vector e whose entries are the equities of the respective banks.

.3. DebtRank accounting for differing maturity of loans

In order to take into account how distress in one layer propagates to other layers, we use the index set Y = {α |
∈ {1, 2, 3, . . . ,M}} and let the first layer, α = 1, represent the interbank liability network of loans with the shortest

maturities and the last layer, α = M , represents the interbank liability network of loans with the longest maturities.
herefore L1ij represents the interbank liability matrix of the loans with the shortest maturities and LMij represents the
nterbank liability matrix of the loans with the longest maturities. It is assumed that any distress experienced impacts
he short-term liability before the long-term liability. Then the impact matrix for layer α > 1 is given by

Wα
ij =

⎧⎪⎨⎪⎩
Lαji

max

(
Lαji , ej−

∑α−1
κ=1

∑N
p=1 Lκjph

κ
p (T )

) if Lα
ji > 0

0 otherwise
(11)

and for α = 1, the impact matrix is given by

W 1
ij = min

(
1,

L1ji ) (12)

ej

4
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here hκ
i (T ) is the distress that bank i experiences in layer κ at time T . For α > 1 the equity is reduced by the lending

mount affected by the distress in the previous layers. The DR of the first layer is calculated using the usual initial
onditions of the conventional DR as shown in Eq. (12), and the dynamics for layers α > 1 follows similarly to the
onventional DR algorithm. In other words, we let h1

i ∈ [0, 1] represent the level of distress of bank i resulting from
he initial distress in the first layer and s1i ∈ {U,D, I} be the discrete state variable where U,D, and I represent the
undistressed, distressed, and inactive state, respectively. Then, for each layer, the dynamics of hα

i follows

hα
i (t) = min

{
1, hα

i (t − 1)+
∑

j|sαj (t−1)=D

Wα
ji h

α
j (t − 1)

}
(13)

sαi (t) =

⎧⎨⎩
D if hα

i (t) > 0; sαi (t − 1) ̸= I
I if sαi (t − 1) = D
sαi (t − 1) otherwise

where hα
i is calculated for all i at every time step. The calculation for layer α is stopped as soon as all the banks in layer

α is in the state U or I after some finite time T has passed. The initial distress and state for all nodes i in layers α > 1
are set according to the following equations

hα
i (0) = hα−1

i (T ) (14)

sαi (0) =
{
D if hα−1

i (T ) > 0
U otherwise.

(15)

Therefore, any node that was distressed in the previous layer will maintain the same levels of distress at time 0 in the
next layer.1 Furthermore, any nodes that become inactive after becoming distressed will have their state set to distressed
or undistressed and will be able to propagate distress again in subsequent layers.

The DR of each layer α is calculated after some finite time T has passed or once all banks are in state U or I . Again,
we define the total amount loaned by a bank i in layer α as lαi =

∑N
j=1 L

α
ij . Then DR of bank i is calculated as

Rα
i =

{∑
j h

α
j (T )v

α
j − hα

i (1)v
α
i if α = 1∑

j h
α
j (T )v

α
j if α > 1

(16)

where vα
i is the relative economic value of each node i in layer α

vα
i =

lαi∑N
k=1 l

α
k

∀i ∈ V . (17)

Note that the DR of each layer takes into account the distress from the previous layers, and therefore the DR of the
multi-layered complex network will be greater than the conventional DR measure. Given that the DR is dependent only
on Lα

ij and ej, we define Ri(Lα, e) = Rα
i for a given liability network Lα in layer α and vector e whose entries are the equities

f the respective banks. The total DR of the multi-layer network is then calculated by

R(L, e) =
M∑

α=1

N∑
i=1

vαRi(Lα, e) (18)

here

vα
=

∑N
i=1 l

α
i∑M

α=1
∑N

i=1 l
α
i

. (19)

.4. DebtRank weighted by leverage and credit risk

The DR measures the economic value lost due to the spread of the distress from a single bank. This measure does not
rovide insight into how likely a bank is to default. Credit risk is the measure of the likelihood that a bank will default
n a debt obligation. One might be more concerned about a bank with high DR and high credit risk than a bank with a
ow DR but high credit risk, as the impact on the network due to the failure of the first bank is far greater than impact
n the network due to the failure of the second bank. After generating the balance sheet of the banks in the complex
etwork, we can use the leverage ratio as a proxy of the bank’s credit risk. There are several different leverage ratios that
re commonly used in finance. We will use debt-to-assets ratio ki for a bank i as defined below

ki =
di + bi

ci + li + oi
. (20)

1 Eq. (14) can be modified to include a recovery rate to allow banks to reduce the level of distress that is transferred to the next layer.
5
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This measure will be used to modify the objective of the RL agent to preferentially reduce the systemic risk of higher
leveraged banks. To implement this desired behaviour we weight the individual DR of the banks by their respective level
of credit risk using a credit weight function w(ki) dependent on the leverage ratio of the bank. The credit weighted DR is
then

Rw(L, e, k) =
M∑

α=1

N∑
i=1

w(ki)vαRi(Lα, e) (21)

where k is the vector of the leverage ratios of each bank. The degree of importance placed on the level of credit risk when
reducing systemic risk can be changed by modifying the form of w(ki). An alternative estimate of the credit risk can also
be used instead of the defined value of ki in Eq. (20).

3. Reinforcement learning

In our study, we take a RL approach to reorganizing the financial network. Since the DR reduction process can be
constantly changed, we require an off-policy agent that maps a high dimensional state space to a high dimensional
continuous action space. So we will adopt the DDPG algorithm. DDPG, proposed in Lillicrap et al. [39], is an actor–critic
based deep RL algorithm that has made remarkable achievements in the financial perspective. It uses a neural network
as a Q-function approximator. To address the relatively unstable learned action function, they propose the use of a replay
buffer and soft target updates to improve convergence to the optimal policy.

The classical DDPG algorithm has been developed by considering a Markov decision process with a state space S ,
action space A, transition dynamics p(st+1 | st , at ), and reward function r . The return from a state is defined as the sum
of discounted future reward

Rt =

T∑
i=t

γ (i−t)r(si, ai) (22)

where γ ∈ [0, 1] is the discount factor, si ∈ S and ai ∈ A are the observation and the agent’s action, respectively. The
state–action value is defined by

Qµ(s, a) = Eri≥t ,si>t∼E,ai>t∼µ[Rt |st , at ] (23)

and we use the recursive Bellman equation

Qµ(st , at ) = Ert ,st+1∼E[r(st , at )+ γQµ(st+1, µ(st+1))] (24)

where rt , st+1 ∼ E indicates that the current reward and the future state are sampled from the environment. The
parametrized actor function µ(s|θµ) maps the states S to action A. The Q -function will be approximated by the critic
by minimizing the loss

L(θQ ) = E(st ,at ,rt ,st+1)∼D[(Q (st , at | θQ )− yt )2] (25)

yt = r(st , at )+ γQ ′(st+1, µ′(st+1 | θµ′ ) | θQ ′ ) (26)

where D is the replay buffer that stores the transitions of the DDPG agent and µ′(s | θµ′ ) and Q ′(s, a | θQ ′ ) are the target
actor and critic networks, respectively. The weights of the target networks are slowly updated using the learned networks’
weights. The purpose of the target networks is to improve the stability of learning. The policy µ : S → A of the agent is
learned using the actor network. We train the actor network by maximizing the expected return J with respect to θµ

J = Est∼D[Q (s, a | θQ ) |s=st ,a=µ(st |θµ)]. (27)

The actor network is updated with the policy gradient using the results from Silver et al. [42]

∇θµ J = Est∼D[∇aQ (s, a | θQ ) |s=st ,a=µ(st ) ∇θµµ(s | θµ) |s=st ]. (28)

In the context of a complex network of banks, we have a single agent that assigns different amounts of lending to each
bank in the network. In our problem setting we wish to reward the agent every time a network configuration results in
a lower overall DR. In the following section, we will express our problem setting in an RL framework.

3.1. The observation space

The environment consists of N financial institutions or banks. We set M different types of lending relationships the
banks can establish with one another. In our environment, each layer represents different maturity lengths of loans.
Therefore, there exist M(N2

− N) lending relationships that the agent can assign to form the complex network. Some
examples of different relationships include deposits and loans, security cross-holdings, derivatives, and foreign exchange,

and loans with differing maturities [10,28]. Every bank in the environment is given a balance sheet as described in

6
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ection 2. The objective of the agent is to find the network configuration with the least amount of systemic risk measured
sing Eq. (16). In our implementation, we let the observation of the agent consist of the vectorization of the interbank
iability network. The vectorization of the liability matrix L is defined by

vec(L) = (L11, . . . , L1N , L21, . . . , L2N , . . . , LN1, . . . , LNN ). (29)

Therefore the observation, st , of the DDPG agent is given by

st = {vec(Lα(t))|α = 1, 2, . . . ,M} (30)

.2. The action space

Our DDPG agent will interact with the environment by modifying lending amounts of each bank in the network based
n the observation st . The interbank liability network at time t is denoted L(t). The action provided by the RL agent will
e denoted by ∆L(t). The quantity ∆Lα(t) is a modification to the current lending network. Through this action a new
nterbank lending network Lα(t + 1) will be constructed. Therefore, the new interbank lending network is given by

Lα(t + 1) = Lα(t)+∆Lα(t) (31)

After the agent acts on the environment and modifies the complex network, we wish to conserve the total borrowing
and total lending amounts of each bank in the network. Additionally, we require the new lending amounts of each bank to
be non-negative. Let the lending relationships at time t be given by Lα(t). Then lαi (t) =

∑N
i=1 L

α
ij (t) and bα

i (t) =
∑N

j=1 L
α
ji (t)

s the total α-type lending and borrowing amount of the ith bank, respectively, at time t . Then we wish to find an Lα(t)
here the following constraints are satisfied

N∑
j=1

Lα
ij (t) = lαi (0) ∀i ∈ V , α ∈ Y , t ≥ 0 (32)

N∑
j=1

Lα
ji (t) = bα

i (0) ∀i ∈ V , α ∈ Y , t ≥ 0 (33)

Lα
ij (t) ≥ 0 ∀i ∈ V , α ∈ Y , t ≥ 0 (34)

In order to construct the action of the RL agent, we will be using the framework outlined in Section 4.1 where we
utline how to satisfy the lending and borrowing constraints by using a linear transformation, and in Section 4.2 where
e outline how to satisfy the non-negativity constraints by introducing a safety layer using quadratic programming (QP).
n overview of our constraint DDPG structure and its interaction with the safety layer can be found in Fig. 2.

.3. Reward and episode termination

The objective of our problem is to minimize the systemic risk with respect to the multi-layer DR. To do so, we intend
o reward the agent every episode when the DR is reduced. Here we define the reward function

r(s, a) = max
(
1− λ

R(L(t + 1), e)
R(L(t), e)

, 0
)

(35)

here λ ∈ R. In this way, the agent is given a reward if the DR in the next step is lower than the previous step’s DR. The
actor λ can be used to set a threshold on how low the DR must be before the agent is given a positive reward. In our
xperiments we set λ = 1. The environment is also designed such that the episode ends if the DR achieved at time t + 1

is higher than the DR at time t . Comparing the DR at time t+1 to the DR at time t instead of at time t = 0 has the added
benefit that the DR measured at the end of an episode is the lowest DR achieved in that episode.

Incorporating the credit risk weighted DR into the reward function results in

rw(s, a, k) = max
(
1− λ

Rw(L(t + 1), e, k)
Rw(L(t), e, k)

, 0
)
. (36)

Therefore, the RL agent will be rewarded more when banks with a large leverage ratio (i.e., more risky in terms of
credit risk) have their DR reduced. In this way, we incentivize reducing the DR of a bank with a high leverage ratio over
reducing the DR of a bank with a lower leverage ratio.

4. Proposed approaches

The classical DDPG agent cannot be directly applied to our problem of reorganizing the multi-layer complex network
as there are a number of properties that we wish to preserve.2 To preserve the operational well-being of the banks in the

2 The code (and data) in this paper is posted on https://github.com/PencilKit/Reducing-Systemic-Risk-with-DDPG.
7
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Fig. 2. A diagram of the constraint DDPG architecture interacting with the safety layer and environment.

Table 1
Parameter settings for the DDPG agent.
Hyperparameter Value Description

actor lr 3× 10−5 Actor learning rate
critic lr 3× 10−4 Critic learning rate
γ 0.80 Discount factor
τ 0.001 Factor for the soft update of target networks
Nmini 256 Batch size
D 750 Replay buffer size
T 50 Maximum number of steps per episode

network, we require that the total lending and borrowing amounts on the stylized balance sheets to be conserved after
reorganization. This idea is expressed through constraints (32) and (33). Additionally, after reorganization our model does
not allow for negative lending. This idea is expressed through constraint (34). These constraints are achieved by using the
transformation outlined in Section 4.1 and the safety layer presented in Section 4.2. The parameters and hyperparameters
used in the construction of the complex multi-layer network and our DDPG agent, respectively, are outlined in Table 1.

4.1. Lending and borrowing constraints

This section will describe how we can modify the network without violating the lending and borrowing constraint.
ote that the α and t in the notation are dropped in this section. This is because the framework outlined in this section
s independent of the layer in the multi-complex network and the time when the DDPG agent acts in the environment.
e define ∆L as the change in the liability network and the new network configuration as L′ = L + ∆L. We wish to

ind a mapping for the actions generated by the policy to ∆L. For a given liability matrix L we note that Lij = 0 for i = j,
herefore, we are only concerned with finding values of ∆Lij where i ̸= j, the off-diagonal elements of ∆L. For a matrix A
f size N × N we define offdiag(A) to be the vector of size N(N − 1) containing the off-diagonal elements of A.
8
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In order to modify the interbank liability network while satisfying constraints (32) and (33), we require that ∆L satisfy
he following constraints

N∑
j=1

∆Lij = 0 ∀i ∈ V (37)

N∑
j=1

∆Lji = 0 ∀i ∈ V . (38)

To accomplish this, we solve the following homogeneous system of linear equations

Dx = 0 (39)

here we define the solution vector by

x = offdiag(∆L) (40)

=(∆L12, ∆L13, . . . , ∆L1N , (41)
∆L21, ∆L23, . . . , ∆L2N , . . . ,

∆LN1, ∆LN2, . . . , ∆LN,N−1)

We then define a constraint matrix D of size 2N × N(N − 1) by

D =
[
C1 C2 ... CN
J1 J2 ... JN−1

]
(42)

where Cn are the sub-matrices of size N × (N − 1) for 1 ≤ n ≤ N whose entries are equal to 1 in the nth row and 0 in all
ther rows. Jn are the sub-matrices of size N × N defined by the following recursion

J1 = I, (43)

Jn+1 = E(N−1),N ...E23E12Jn (44)

here I is the identity matrix and Eij is the elementary matrix corresponding to the column switching transformation
between columns i and j. The sub-matrices Cn in this system constrain each row of ∆L to sum to zero while the sub-
matrices Jn constrains each column of ∆L. An example of the structure of the system for N = 4 is presented below

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆L12
∆L13
∆L14
∆L21
∆L23
∆L24
∆L31
∆L32
∆L34
∆L41
∆L42
∆L43

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(45)

For N ≥ 3, we have 2N ≤ N(N − 1) so the homogeneous system (39) has infinitely many solutions and x ∈ null(D).
This null space is useful because the solutions here satisfy Eqs. (37) and (38).

In order for the DDPG agent to make a choice of ∆L, we will have it solve system (39). To accomplish this, we express
the vector (40) as a linear combination of the basis vectors of the null space of D. That is, let k1, k2, . . . ,kd be the basis
vectors of null(D), then all solutions to system (39) are given by

Ku = x (46)

where K is the basis matrix and u = (u1, u2, . . . , ud) is a vector of size d and ui ∈ R for i = 1, 2, . . . , d.
For each step in the environment the actor network will need to provide a set of vectors u for each layer. The action

space is therefore A = RMd and the output of the actor network is then

µ(s) = (u1, u2, . . . , u(Md)). (47)

We can then partition the elements of vector (47) into M vectors of length d to be applied to the respective layers of
the complex network. We will use

uα
= (u(α−1)d+1, u(α−1)d+2, . . . , uαd) (48)

α
to calculate the non-diagonal values of ∆L using Eq. (46).

9
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Although a more intuitive approach might be to have the DDPG agent directly calculate ∆L, the action space would
then be RM(N2). However, by using the basis matrix K as described above we can reduce the dimension of the action space.

Theorem 4.1.1. Let D be the constraint matrix as described by Eq. (42) for a liability network of size N × N where N ∈ N
uch that N ≥ 3. Then the dimension of the action space for a single layer network is reduced by 2N − 1, from N(N − 1) to
2
− 3N + 1.

roof. Given a constraint matrix D as described by Eq. (42), let Di be the ith row of matrix D. We note that the first row
an be written as the following linear combination

D1 =

2N∑
i=N+1

Di −

N∑
i=2

Di (49)

nd so, D1 is linearly dependent and can be made into a zero vector by subtracting the first row by Eq. (49), resulting in[
0 C2 ... CN
J1 J2 ... JN−1

]
(50)

here 0 is the N × (N − 1) zero matrix. Second, swapping the first N rows with the last N + 1 to 2N rows gives[
J1 J2 ... JN−1
0 C2 ... CN

]
(51)

hird, we shift row DN+1 down until we get[
J1 J2 ... JN−1
0 C1 ... CN−1

]
(52)

inally adding −DN to DN+1 gives[
J1 J2 ... JN−1
0 C1 + Z ... CN−1 + Z

]
(53)

here Z is a submatrix of size N × (N − 1) with elements

Zij =
{
−1 if i = 1, j = 1
0 otherwise

(54)

he matrix D is now in reduced row echelon form and by inspection we find that the Rank(D) = 2N − 1. Now by the
ank-nullity theorem, we have

Rank(D)+ Nullity(D) = N(N − 1) (55)

nd the Nullity(D) is then given by

Nullity(D) = N(N − 1)− Rank(D) (56)

= N(N − 1)− (2N − 1) (57)

= N2
− 3N + 1. (58)

herefore, the dimension of the action space for a single layer network is N2
− 3N + 1. □

By Theorem 4.1.1 the exact size of the action space is reduced by 2N−1 and, in fact, the dimension of the action space
s d = N2

−3N+1. Again we note that the matrix K is layer-independent and only needs to be calculated once. Therefore
he action space of concern is denoted by A = RM(N2

−3N+1).

.2. Safety layer: Non-negativity constraints

The framework described above conserves the total lending and borrowing amounts of each bank but still allows for
he possibility of negative lending amounts after a single step through the environment. In order to maintain the non-
egativity conditions on Lα(t + 1), we pass the action through a QP problem inspired by Dalal et al. [40]. This amounts
o solving the following QP problem

argmin
xα

1
2 ∥Kx

α
− Kuα∥

2

subject to offdiag(Lα(t))+ Kxα
⪰ 0

(59)

here the inequality ⪰ represents an element-wise inequality. The constraints of problem (59) ensure that after a step
L the elements of L(t + 1) will be non-negative. The QP problem itself aims to perturb the off-diagonal elements of ∆L
10
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Fig. 3. A diagram describing how the optimal policy is modified using the safety layer. The optimal policy µ(s) is first partitioned into M policies
or the respective layers of the multi-layer network. Each of these policies are then fed into the safety layer to operate on the policy to constrain
he rows/columns and non-negativity condition of L(t + 1) respectively. The constrained action Kx̃α contains the off-diagonal elements of a feasible
L.

n the Euclidean norm in order to satisfy constraint (34). Practically, we implement the CPLEX solver to solve problem
59).

By imposing these constraints, the actions from the agent will result in a liability network where the total lending
nd borrowing amounts appearing on their balance sheet are preserved. And after modifying the network structure, the
on-negativity constraint will also be preserved. This will reduce the impact of the change in lending relationships on
he banks’ operations. We also note that by using the methods described in Section 4.1, we are able to avoid including
onstraints (32) and (33) to problem (59). A diagram detailing the flow of the policy through the safety layer can be found
n Fig. 3.

.3. Experiments

.3.1. Initializing the complex network and DDPG agent
To generate our complex network we will start by using the R package systemicrisk to build the interbank liability

atrix Lα . In doing so, we can forgo the use of Eq. (2). Following Diem [43], we begin by randomly sampling the row and
olumn sum vectors l̂α and âα of Lα , respectively, where

l̂α = (l̂α1 , l̂
α
2 , . . . , l̂

α
N )

âα
= (âα

1 , â
α
2 , . . . , â

α
N ).

In our experiments, we consider three different network sizes where N ∈ {10, 20, 30}. Let b ∈ B̂,m ∈ M̂, s ∈ Ŝ be the
et of indices denoting the big, medium, and small banks respectively. The elements of the row and column sum vectors
re sampled from the following uniform distributions

l̂αb ∼ U(6000, 10000), l̂αm ∼ U(2000, 6000), l̂αs ∼ U(500, 2000)

nd

âα
b ∼ U(0, 2000), âα

m ∼ U(0, 700), âα
s ∼ U(0, 150)

here B̂ = {1}, M̂ = {2, 3}, Ŝ = {4, . . . ,N} for N = 10 and B̂ = {1, 2}, M̂ = {3, 4, 5}, Ŝ = {6, . . . ,N} for N = 20, 30. The
ystemicrisk package estimates interbank liability matrices satisfying l̂α and âα based on Bayesian methodology developed
y Gandy and Veraart [44].
With the liability matrices given, we can set the total asset value of the entire network using A = s

∑
α

∑
i,j L

α
ij where

> 1. The relative proportion of the network value that is used for lending can then be calculated as

θα
=

∑
i,j L

α
ij

A
. (60)

Finally, we can generate the balance sheet of each bank in the network using Eqs. (3) to (6). We set the cash deposit
ratio to be β = 0.18 and the equity capital ratio for each bank i to be sampled from the following interval, γi ∈ (0.07, 0.2).

hen modifying the reward function to incorporate credit risk, we set γi = 0.2 with ki ∈ (0.07, 0.12) ∪ (0.85, 1.0). The
important quantity to consider on the balance sheet is the equity given by Eq. (4) as this value is used in the calculation
of the DR. Other values of the balance sheet may be used to calculate any other relevant financial variables, as required.

To test the effectiveness of applying RL in reducing systemic risk, we train and evaluate the RL agent on a number of
different network structures. We also tested the flexibility of using RL by incorporating the notion of credit risk using the
modified reward function, Eq. (36).
11



R. Le and H. Ku Physica A 605 (2022) 128029

i
t
e
j
m

w

w

i
E
a
c

Given the simulated multi-layer complex network we can begin reducing the systemic risk using DDPG. We use the
Tensorflow TF-Agents framework to accomplish this task. For both actor and critic networks, we use three-layer neural
networks with node sizes (256, 256, 256). The parameter settings for the DDPG agent can be found in Table 1. Training
was done for 8000 total iteration steps.

4.3.2. Single layer case
In the single layer case, we will be investigating the effectiveness of the RL agent in reducing the systemic risk of the

network and the effect of modifying the reward function for preferential reduction in DR for particular banks across the
single layer network. For the single-layer case experiments, we let N ∈ {10, 20, 30} and M = 1. The reward function used
n reducing the systemic risk is Eq. (35). To preferentially reduce systemic risk for highly leveraged banks, we consider
he reward function (36) using four different weighting schemes. The DR distribution for the complex networks when
xploring the effectiveness of the different weight functions is approximately uniform. This allows us to more easily
udge the differences between the weight functions. In this way we can compare the different weight functions in a fair
anner.

wuniform(ki) = 1.0 (61)

wlinear(ki) = ki (62)

wexp,v(ki) = evki (63)

The first and second weighting schemes use a constant weight of 1.0 and linear weights comprising of the leverage ratio
defined by Eqs. (61), and (62) respectively. The third and fourth weighting schemes use an exponential weight dependent
on the leverage ratio defined by Eq. (63) with parameter v = 1.0 and v = 10.0 respectively.

4.3.3. Multi-layer case
In the multi-layer case, we will be investigating the effectiveness of the RL agent in reducing the systemic risk of

the network and present some observations on the network characteristics of multi-layer networks. For the multi-layer
experiments we let N ∈ {10, 20, 30} and M ∈ {1, 2, 3}. Therefore, the RL agent will be tasked with reducing systemic risk
under nine different network sizes. Similar to the single-layer case, the reward function used in reducing the systemic
risk is Eq. (35). The DR however, is calculated using the multi-layer DR algorithm outlined in Section 2.3.

Given the optimized complex networks, we can observe the different characteristics of a multi-layer complex network
after it has been modified by our RL model. We present the density, Jaccard distance, clustering coefficient, and
average-weighted neighbour degree. The density for layer α of the multi-layer complex network is given by

d =
mα

N(N − 1)
(64)

here mα is the number of edges in layer α and N is the number of banks. This is the number of edges divided by the
total number of possible edges. Therefore, the density can serve as a measure of sparsity.

To compare the differences between each layer of the network before and after optimization, we use the Jaccard
distance measure. Given the two sets of edges Eα and Eκ we can calculate the Jaccard distance by

dJ (Eα, Eκ ) = 1− J(Eα, Eκ ) (65)

where J(Eα, Eκ ) is the Jaccard similarity index between layers α and κ . The Jaccard similarity index is calculated as by

J(Eα, Eκ ) =
|Eα ∩ Eκ |

|Eα ∪ Eκ |
(66)

The Jaccard distance measures the dissimilarity between the different layers by comparing the proportion of similar
edge connections between the layers. The directed networks are converted to undirected networks before calculating the
Jaccard distance.

Next we compute the clustering coefficient, treating each layer of the network as a directed unweighted graph. The
clustering coefficient ci for node i in layer α of the multi-layer complex network is given by

ci =
Ti

2(kα
total,i(k

α
total,i − 1)− 2kα

↔,i)
(67)

here Ti is the total number of directed triangles formed by node i and

kα
total,i = kα

out,i + kα
in,i (68)

s the total degree of node i in layer α and kα
↔,i is the number of bilateral edges between node i and its neighbours.

q. (67) measures the clustering coefficient for a directed unweighted graph. The clustering coefficient is the ratio between
ll directed triangles and the number of possible triangles which measures the tendency of the network to form tightly
onnected neighbourhoods [45].
12
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Fig. 4. The DR of single-layer network of size N = 30. The banks are ordered from largest to smallest based on their DR. The red bars represent
he initial levels of DR while the blue bars represent the optimized levels of DR.

Finally, treating each layer of the network as a directed weighted graph, we compute the average-weighted neighbour
egree [20]. The average-weighted neighbour degree kα

nn,i for node i in layer α of the multi-layer complex network is
given by

kα
nn,i =

1
sαi

N∑
j=1

(Lα
ij + Lα

ji )k
α
total,j (69)

where

sαi =
N∑
j=1

Lα
ij + Lα

ji (70)

is the weighted node degree of bank i in layer α.

5. Results and discussion

We will be evaluating the effectiveness of our constraint DDPG model in reducing systemic risk for two cases: (1) the
single-layer case and (2) the multi-layer cases. It should be noted that given the nature of RL, it cannot be guaranteed
that the reduced DR is a global optimum. However, with this trade-off, we are granted the flexibility of RL allowing the
DDPG agent to directly consider the recursive DR measure in its reward. Additionally, we introduce the idea of preferential
systemic risk reduction to the DDPG agent by modifying the reward function whose results can be found in Section 5.1.
Furthermore, to adapt the RL model to a multi-layer case we simply extend the DDPG agent’s action to different layers
and modify the reward function to include the DR of different layers whose results can be found in Section 5.2. The DDPG
agent was tested on two types of networks. The first type consisting of a few number of large banks and the second type
consisting of banks of similar sizes. In all cases we use the same set of hyperparameters described in Table 1. With more
sophisticated hyperparameter tuning methods, it is suspected that the DR can be further reduced.

5.1. Single-layer complex network

The results in Figs. 4 and 5 were generated using Eq. (35) as the reward function with N = 30 and M = 1. The DR
calculated in this section uses the conventional DR algorithm. For this particular network, the DR was reduced from 10.21
to 2.58. The DDPG agent achieved a reduction of 74.73%. From Fig. 4, it can be observed that every bank has had their DR
significantly reduced after optimization. Although the degree of reduction in DR between each bank varies, we did not
observe an increase in DR for any bank.

From Fig. 5 we can see how the network changes before and after optimization by the DDPG agent. An obvious increase
in the sparsity can be observed. Using the policy that provides the greatest minimization of the DR we calculate average
13
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N

Fig. 5. The structure of the single-layer complex network of size N = 30, where red represents high DR and blue represents low DR. The size of
the circle represents the initial equity of the banks. The directed edges represent the lending relationship from bank i to bank j.

Fig. 6. The low and high leverage banks were separated into two groups and the average total optimized DR was plotted for a network of size
= 30,M = 1. The average and standard deviation (presented as error bars) was calculated using 100 episodes.

DR reduction across 100 episodes. From Table 2 we find that the DR was reduced significantly for all networks of size
N ∈ {10, 20, 30} and M = 1, the level of reduction achieved ranged from 70% to 75%.

The reward functions in this paper are designed to incentivize the DDPG agent to reduce the overall systemic risk
of the network. By introducing the weight factors (61)–(63) and using reward function (36), we aim to incentivize the
agent to reduce the overall systemic risk while also preferentially reducing the DR of highly leveraged banks. The level
of reduction in DR using the uniform weight factor (61) will be treated as the benchmark (where there is effectively no
weight factor on the DR of each bank). In Fig. 6, we compare the total DR for each leverage group. For the low leverage
banks, we find that the total DR when using the linear and exponential weight functions is similar or greater compared
to the benchmark total DR. The opposite observation is made for the high-leverage group. That is, when using linear and
exponential weight functions, the total DR is lower compared to the benchmark total DR.
14
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Table 2
The average initial DR, optimized DR, and % reduction under each weighting scheme (Uniform, Linear, and Exponential
with v = 1.0 and v = 10.0). The results are generated using single layer networks of size N ∈ {10, 20, 30} over 100
episodes. The standard deviations are presented in the brackets.
N Uniform Linear

Initial DR Optimized DR % reduction Initial DR Optimized DR % reduction

10 7.85 (0.41) 2.31 (0.26) 70.52 (3.94) 7.84 (0.38) 2.61 (0.40) 66.62 (5.53)
20 11.37 (0.48) 2.69 (0.16) 76.27 (1.52) 11.36 (0.50) 3.14 (0.19) 72.34 (2.09)
30 13.28 (0.49) 3.31 (0.18) 75.02 (1.55) 13.22 (0.57) 3.05 (0.19) 76.87 (1.65)

Exponential (v = 1.0) Exponential (v = 10.0)

10 7.86 (0.32) 2.36 (0.26) 69.98 (3.50) 7.83 (0.31) 2.60 (0.35) 66.75 (4.76)
20 11.44 (0.49) 3.13 (0.27) 72.62 (2.41) 11.44 (0.52) 3.07 (0.32) 73.07 (3.11)
30 13.28 (0.53) 3.08 (0.16) 76.82 (1.36) 13.23 (0.50) 3.34 (0.36) 74.76 (2.73)

Note that despite higher leveraged banks receiving a greater weight in magnitude when using the exponential weight
functions (63) compared to linear weight functions (62), we find that this does not necessarily mean there is a greater
prioritization for the reduction of DR with respect to credit risk. From Fig. 6, we observe that the linear weight provides
a much more significant bias to reduce the DR of high leverage banks when compared to using the exponential weights
with v = 10.0. This variability may be due to the stochastic nature of RL in training and the initial network structure to be
optimized. Despite this observation, the modification to the reward function appears to encode the desired preferential
reduction in systemic risk for highly leveraged banks when compared to not applying any weighting.

Additionally, regardless of the weight function used, the main goal of the DDPG agent was achieved where the DR of
he networks is reduced overall. The change in the DRs can be found in Table 2. The DDPG agent achieved a reduction
s low as 67% to as high as 77% in DR depending on the weight function used. Preferentially reducing systemic risk of
ighly leveraged banks is beneficial because although some banks might have high levels of systemic risk, their credit risk
ight also be lower. In this case, reducing the systemic risk of banks with higher credit risk can be prioritized by simply
odifying the reward function.

.2. Multi-layer complex network

All DRs in this section were reduced using Eq. (35) as the reward function for the DDPG agent. Figs. 7 and 8 were
enerated using a complex network of size N = 30,M = 3. The initial DR that was calculated before applying the DDPG
gent was 11.10. After training and evaluation, we found that the DR was reduced to 6.53, a reduction of 41%. In Fig. 7,
notable increase in DR can be observed across layers. This is expected as the multi-layer DR algorithm accounts for the

nter-layer contagion spreading through successive layers. As distress accumulates from one layer to another, the equity
f the banks may not be sufficient to cover the default of loans in higher layers. The equity of the banks in distress are
educed by the lending amount proportional to the distress experienced in the previous layer described by Eq. (11). Despite
he additional level of systemic risk accumulated in a multi-layer network, we can see that by modifying the previous
ayers’ structure we can reduce the overall DR by some amount in the subsequent layers. This is further evident when we
ote that the initial DR of the first, second and third layer are 1.14, 3.21, and 6.74 respectively. After reduction, the DR in
he first, second and third layers was 0.62, 2.05, and 3.85. Therefore, the reduction achieved across the layers was 46%,
6%, and 43%, respectively. We find the greatest reduction in systemic risk in the first layer, despite having a relatively
ow level of initial DR compared to the other layers. Considering that the distress from the first layer propagates to the
ollowing layers, targeting the layer where the distress originates for optimization may prove to be the most effective. In
his example, the DDPG agent targets the first layer, but other network configurations and different shock propagation
ynamics may present different nodes or layers to prioritize.
The average optimized DRs can be found in Table 3. For all network types in the multi-layer case, we found that

he DDPG agent was able to achieve an average reduction ranging from 8% to 57%. The lowest reduction achieved was
n the case of similar sized banks with N = 30,M = 3 with a reduction of 8%. This may be due to the already low
verage initial DR. The network structure consisting of similarly sized banks in a multi-layer setting may also present
ome difficulty in DR reduction for the DDPG agent. Bear in mind Glasserman and Young [9] report that contagion effects
re more pronounced when node sizes are heterogeneous, suggesting that the performance of the DDPG agent under the
‘Few Large Banks’’ scenario should take higher precedence. By allowing contagion to accumulate across successive layers,
e find that the increase in overall distress results in an overall lower level of systemic risk reduction achieved after
ptimization.
From Fig. 8, the reorganization of the multi-layer complex network results in an increase in sparsity of the network

ased on the density of the edges. The average density values for each layer of the corresponding networks can be found
n Table 4. We observe that in every case of optimization, the average density was lowered. It appears that given the
arger network size, a larger reduction in density is observed. Although the increase in sparsity is consistent with what
as been observed in other studies, this observation is not necessarily unique to an optimized network with low DR, as
etworks with high DR after optimization have been observed as well [20].
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c

Fig. 7. The DR of multi-layer network of size N = 30. The DRs in this plot are weighted by each layer’s total relative economic value, vα . The banks
are ordered from largest to smallest based on their DR. The red bars represent the initial levels of DR while the blue bars represent the reduced
levels of DR.

Fig. 8. The structure of the multi-layer complex network of size N = 30, where red represents high DR and blue represents low DR. The size of the
ircle represents the initial equity of the banks. The directed edges represent the lending relationship from bank i to bank j.
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Table 3
The average DR of the initial and optimized networks along with the % reduction after optimization for multi-layer networks
of size N ∈ {10, 20, 30} and M ∈ {1, 2, 3} over 100 episodes. The values in the brackets are the standard deviations. The DR
values are calculated using equation (35). The ratio of large to medium to small banks under the ‘‘Few Large Banks’’ scenario
is 1:2:8 for N = 10 and 2:3:(N-5) for N = 20, 30, while the distribution of bank sizes is uniform under the ‘‘Similar Sized
Banks’’ scenario.
N M Few Large Banks Similar Sized Banks

Init. DR Opt. DR % red. Init. DR Opt. DR % red.

10
1 7.81 (0.30) 3.40 (0.19) 56.38 (2.73) 7.86 (0.33) 2.25 (0.24) 71.32 (3.23)
2 7.00 (0.28) 4.41 (0.22) 36.91 (4.05) 5.53 (0.21) 3.32 (0.12) 39.89 (2.83)
3 7.00 (0.24) 4.70 (0.12) 32.88 (2.79) 4.87 (0.10) 3.13 (0.11) 35.72 (2.32)

20
1 13.88 (0.52) 4.11 (0.33) 70.37 (2.71) 11.62 (0.48) 3.02 (0.12) 73.99 (1.52)
2 11.98 (0.29) 5.54 (0.09) 53.75 (1.18) 6.19 (0.17) 4.24 (0.08) 31.52 (2.21)
3 10.03 (0.20) 5.95 (0.30) 40.68 (3.33) 4.90 (0.08) 4.21 (0.05) 14.05 (1.62)

30
1 18.79 (0.64) 4.04 (0.38) 78.46 (2.10) 13.13 (0.49) 3.20 (0.24) 75.63 (1.87)
2 13.38 (0.38) 5.72 (0.51) 57.21 (4.28) 6.14 (0.11) 4.15 (0.08) 32.38 (1.51)
3 11.29 (0.21) 6.66 (0.13) 41.05 (1.48) 4.81 (0.05) 4.41 (0.03) 8.24 (0.71)

Table 4
The average initial and optimized density for multi-layer complex networks of size N ∈ {10, 20, 30}, and M ∈ {1, 2, 3}
for each respective layer over 100 episodes. The values in the brackets are the standard deviations. The initial and
optimized density are the density before and after optimizing the network configuration with respect to the DR,
respectively.
N 30 20 10

M α Init. density Opt. density Init. density Opt. density Init. density Opt. density

1 1 0.55 (0.05) 0.07 (0.00) 0.57 (0.05) 0.11 (0.00) 0.47 (0.06) 0.21 (0.00)

2 1 0.54 (0.04) 0.08 (0.01) 0.55 (0.06) 0.12 (0.01) 0.56 (0.07) 0.25 (0.01)
2 0.55 (0.04) 0.09 (0.01) 0.57 (0.05) 0.10 (0.00) 0.46 (0.05) 0.22 (0.01)

3
1 0.52 (0.04) 0.07 (0.00) 0.57 (0.05) 0.11 (0.00) 0.59 (0.07) 0.22 (0.01)
2 0.54 (0.04) 0.07 (0.00) 0.54 (0.06) 0.11 (0.01) 0.56 (0.08) 0.22 (0.01)
3 0.55 (0.04) 0.07 (0.00) 0.56 (0.04) 0.11 (0.00) 0.46 (0.05) 0.21 (0.00)

Table 5
The matrices containing the average Jaccard dissimilarity between the layers of multi-layer complex networks of size
N ∈ {10, 20, 30}, and M = 3 over 100 episodes. The values in the brackets are the standard deviations. The initial and
optimized Jaccard dissimilarity are the Jaccard dissimilarity before and after optimizing the network configuration with
respect to the DR, respectively.
N α Initial Optimized

1 2 3 1 2 3

10
1 0 0.33 (0.09) 0.41 (0.08) 0 0.63 (0.02) 0.64 (0.03)
2 0.33 (0.09) 0 0.42 (0.08) 0.63 (0.02) 0 0.59 (0.03)
3 0.41 (0.08) 0.42 (0.08) 0 0.64 (0.03) 0.59 (0.03) 0

20
1 0 0.35 (0.05) 0.34 (0.04) 0 0.80 (0.01) 0.83 (0.01)
2 0.35 (0.05) 0 0.35 (0.05) 0.80 (0.01) 0 0.83 (0.01)
3 0.34 (0.04) 0.35 (0.05) 0 0.83 (0.01) 0.83 (0.01) 0

30
1 0 0.37 (0.03) 0.37 (0.04) 0 0.90 (0.00) 0.90 (0.01)
2 0.37 (0.03) 0 0.36 (0.04) 0.90 (0.00) 0 0.93 (0.00)
3 0.37 (0.04) 0.36 (0.04) 0 0.90 (0.01) 0.93 (0.00) 0

Comparing the Jaccard distances in Table 5 across the different layers for the initial networks, we find that there is
some similarity between all layers. After optimization any similarities between the layers are significantly reduced. That
is, the topology of each layer becomes more dissimilar, suggesting that holding more dissimilar lending patterns across
loans with differing maturities may produce complex networks more resilient against systemic risk. However, the benefits
of diversification for the reduction of systemic risk are heavily debated and have been shown to be intimately related to
systemic risk [46,47]. Acemoglu et al. [48] has shown that diversification protects well against small shocks but poorly
against large shocks. Through empirical evidence [47] argues that large and medium sized banks contribute to systemic
risk through diversification.

Fig. 9(a) depicts the total average neighbourhood degree of the banks in the multi-layer complex network. We find
that there is a significant change in the network characteristics after optimization. After optimization, a large number of
banks will have a reduced total average neighbourhood degree. In all layers, it can be observed that before optimization,
networks with high DR will have a large total average neighbourhood degree. After optimization, the networks have a
17
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Fig. 9. The total DR was plotted against (a) the total average neighbour degree
∑N

i=1 k
α
nn,i in layer α. (b) The average clustering coefficient 1

N

∑N
i=1 ci .

oth figures were generated by plotting the respective measures across 100 episodes using multi-layer complex networks of size N = 30, and M = 3.

educed total DR and lower total average neighbourhood degree. This is consistent with Teteryatnikova [49] who has
hown through a tiered banking system that a negative correlation between neighbouring banks’ degree can increase the
esilience of the network. Fig. 9(b) shows the average clustering coefficient of the multi-layer network, we find that after
ptimization, the average clustering coefficient is reduced for the majority of the networks. This suggests that the banks
n the network begin to form less complete subgraphs with their neighbours after optimization.

.3. Feasibility and regulatory guidance

In our model we delegate the task of discovering lower systemic risk networks to a single RL agent. To accomplish
his task, the RL agent is incentivized through the use of reward functions. At the same time, we attempt to mitigate
he disruption to the operation of the banks by constraining the change to the total lending and borrowing amounts of a
ank. In reality, there are many factors such as interest rates, credit worthiness, and liquidity that influence their decision
aking process. Explicitly modifying an actual interbank network presents a practicability issue as banks have several
bjectives and constraints to achieve and satisfy.
To clarify, we do not suggest imposing the network configuration designed by the RL agent on the participants of a

eal interbank network. Instead, the optimized networks from our model can serve as a benchmark to aid in designing
egulatory policies when considering the multi-layer aspects of interbank networks, which is a use case that has been
imilarly suggested by Li et al. [10], Diem et al. [20], Pichler et al. [21]. To encourage reorganization of the real interbank
etwork, Poledna and Thurner [18], Poledna et al. [19] propose to implement a systemic risk tax. This is a tax on
ransactions between any two counterparties to incentivize the formation of lower systemic risk networks. Their systemic
isk tax is dependent on the change in expected systemic loss, a function of the DR of every bank in the network. In our
odel, the RL agent is guided by a relative change in DR of the network after every optimization pass. While the functional

orms of the incentives are different, the marginal change to DR is a similar concept in both models.
An approach that may admit a more interpretable incentive mechanism would be to consider a multi-agent RL model

uch as the Multi-agent DDPG algorithm [50]. In this case, each bank can represent an agent and the environment can be
esigned to be competitive with respect to their own objectives or cooperative with respect to reducing overall systemic
isk. The reward functions would then represent a direct incentive influencing the behaviour of each bank and hence, the
volution of the interbank network.
18
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. Conclusion

RL is an incredibly powerful tool that proves to be effective in the context of systemic risk management. In this paper,
e introduce a systemic risk reduction framework that takes advantage of RL by modifying the classical DDPG algorithm.
he model reorganizes the interbank lending relationships of banks into a configuration that better mitigates the effects of
ontagion. The asset composition of the multi-layer networks consisted of short-term and long-term debts. In our model,
he repayment of long-term debts is dependent on the solvency of short-term debts.

To calculate the systemic risk of such a network, we propose a new measure of DR accounting for the contagion that
ay spread from one layer to another as well as accounting for the impact of previous defaults on the individual banks’
bility to repay future debts. The behaviour of the RL agent is guided by the reward function, and as a result, our RL agent
s capable of solving problems in assessing and managing systemic risk.

To the best of our knowledge, this cannot be solved by traditional optimization techniques, since a recursive algorithm
an be challenging to incorporate into the objective function of the optimization problem. We propose the DR reduction
earning algorithm, called constraint DDPG, to find a network structure with reduced systemic risk. In order to satisfy
he borrowing and lending constraints and maintain non-negativity with respect to the individual banks’ lending after
pplying the DDPG agent’s action, we modify the actor output in two ways. The first is by proposing a homogeneous
ystem of linear equations whose solutions satisfy the lending and borrowing constraint. The second is the safety layer,
hich satisfies the non-negativity constraint by solving a QP problem. The effectiveness of our model was tested on
ifferent single-layer and multi-layer network with varying sizes, layers, and distribution of assets.
The performance of the RL agent was evaluated based on the level of DR reduction achieved. In all cases, a reduction

n DR was observed, suggesting that RL is indeed an efficient tool in producing network structures that have reduced
ystemic risk in terms of DR. In the single-layer case, a reduction as high as 75% was observed while in the multi-layer
ase a reduction as high as 57% was observed. We find that the optimization process results in considerably different
etwork topologies. The density, average neighbourhood degree, and clustering coefficient were observed to decrease
fter optimization. The Jaccard distance increased between the layers after optimization.
Finally, we present some potential extensions of our work. While we only consider a multi-layer interbank lending

etwork, there are many different transmission channels for systemic risk. Our model can be extended to consider lending,
ecurity cross-holdings, derivatives, and foreign exchange transactions using the multi-layer exposure network model
resented in Poledna et al. [28]. The complex networks used in this study were simulated. It would be interesting to see
he degree of optimization when considering real-world interbank network structures. Another extension could include
multi-action RL framework to consider equity levels or redistribution of wealth across different layers. At the moment
e assign a single DDPG agent with the task to reduce the systemic risk of an entire multi-layer complex network, the
lternative approach to this problem is to design a multi-agent RL framework and let every bank be its own RL agent and
ork cooperatively to reduce the systemic risk.
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A
ppendix. Proposed DR reduction algorithm

Algorithm 1 Constraint DDPG
1: Initialize the multi-layer network
2: Randomly initialize critic network Q (s, a | θQ ) and actor µ(s | θµ) with weights θQ and θµ

3: Initialize target network Q ′ and µ′ with weights θQ ′
←− θQ , θµ′

←− θµ

4: Initialize replay buffer D
5: for episode = 1, Nepisode do
6: Initialize a random process N for action exploration
7: Receive an initial random observation state s1
8: for t = 1, T do
9: Calculate at = µ(st | θµ)+ N according to the current policy and exploration noise

10: for α = 1, M do
11: Take partition uα from at and pass to the safety layer to find x̃α

12: Use x̃α to calculate ∆Lα(t) by Eq. (46)
13: Calculate the new network by Lα(t + 1) = Lα(t)+∆Lα(t)
14: end for
15: Calculate the reward rt based on Eq. (35) or (36) and observe the new state st+1
16: Store transition (st , at , rt , st+1) in D
17: Sample a random minibatch of Nmini transitions (si, ai, ri, si+1) from D
18: Set yi = ri + γQ ′(si+1, µ′(si+1 | θµ′ ) | θQ ′ )
19: Update critic by minimizing the loss:

Lloss =
1

Nmini

∑
i

(yi − Q (si, ai | θQ ))2

20: Update the actor policy using the sampled policy gradient:

∇θµ J ≈
1

Nmini

∑
i

∇aQ (s, a | θQ ) |s=si,a=µ(si) ∇θµµ(s | θµ)|si

21: Update the target networks:

θQ ′
←− τθQ

+ (1− τ )θQ ′

θµ′
←− τθµ

+ (1− τ )θµ′

22: if R(L(t + 1), e) ≥ R(L(t), e) or t = T then
23: End the episode
24: end if
25: end for
26: end for
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