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A B S T R A C T

This study investigates the price structure of urban housing markets comparing the Black–
Scholes model and Merton’s jump diffusion model with the expectation–maximization algo-
rithm. As price jump information is hidden within the price change itself, an appropriate method
must be used to deal with the hidden data. We check the validity of models in six cities using
interval-ahead Monte Carlo simulations. We find that the jump diffusion model is well suited
for analyzing the housing market and price structure in most cases.

. Introduction

Housing forms a large share of an individual’s living expenses, and the purchase of a house is a major financial decision for
household. In continuous-time asset pricing equilibrium models, a stochastic process depicts price movements explaining the
echanism for analyzing and predicting financial products. The Black–Scholes model (BSM) explains fundamental pricing theory

nd is often used to analyze price changes in the housing market (Szymanoski, 1994; Kau and Keenan, 1995; Ambrose and Buttimer,
000; Bardhan et al., 2006; Chu, 2010).

External factors such as macroeconomic factors and government policies should be considered in the price structure (McCue and
ling, 1994; Muellbauer and Murphy, 1997; Chang et al., 2012), but the BSM does not consider any external impact on prices. Such
rice changes can be included in the stochastic process as a jump diffusion process introduced by Merton (1976). Merton’s jump
iffusion model (JDM) is used to analyze the housing market with a focus on valuing mortgage insurance (Chang et al., 2010; Chen
t al., 2010).

Estimating JDM parameters is essential to illustrate the accurate pricing process but is complicated as this model is a mixture
f conditional normal distributions and has an infinite sum of Poisson processes. The computational complexity is due to small
umps in the price movement. Large price movements can be identified as jumps, but one cannot determine whether the small price
hanges are from the geometric Brownian motion or from the jumps.

The expectation–maximization (EM) algorithm, widely used in data science since its introduction (Dempster et al., 1977), is
useful method in such cases. This algorithm allows each mixture to be computed automatically, allowing us to estimate JDM

arameters without the approximated model limits assumptions.
Housing price prediction without considering external effects and other corresponding policies may lead to severe misinterpre-

ations and housing policy failure. Although we assume that the housing price is an equilibrium price, the literature on whether
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housing markets are in the state of bubble is relevant (Case and Shiller, 2003; Smith and Smith, 2006; Arce and Lopez-Salido, 2011).
We also refer to a detailed analysis on the 2008 financial crisis and its impact on the global economy and interconnected financial
systems (Martin, 2010; Levitin and Wachter, 2012; Mcdonald and Stokes, 2013; Moro, 2014; Vidal-Tomas and Alfarano, 2020).

The objective of this paper is to find jump risks and price structure in the housing markets of several cities using JDM. We
stimate JDM parameters using the gradient EM (GEM) algorithm, an extension of the basic EM algorithm. To ensure reliability, we
pply a Monte Carlo simulation with variance reduction and the interval-ahead forecasting. We find that JDM is more effective in
nalyzing the market than BSM, though not in all cases.

. Methodology

We consider a market that trades only in residential houses. Consider a representative house for a single family in a city. Let
𝛺,𝐹 , 𝑃 ) be a probability space and let {𝐹𝑡 ∶ 𝑡 > 0} be the filtration generated by a Brownian motion 𝑊𝑡 and a Poisson process 𝑁𝑡

with intensity 𝜆. Let us assume that a Brownian motion 𝑊𝑡, a Poisson process 𝑁𝑡, and a price jump 𝑦𝑡 are mutually independent. We
define 𝐻𝑡 as the price of a house at time 𝑡 ∈ [0, 𝑇 ]. In BSM, the housing price 𝐻𝑡 at time 𝑡 is modeled by the geometric Brownian
motion and can be calculated analytically:

𝐻𝑡 = 𝐻0 exp
(

(𝜇 − 1
2
𝜎2)𝑡 + 𝜎𝑊𝑡

)

, (1)

where 𝜇 is the (annualized) mean and 𝜎 is the standard deviation of the housing price. Using JDM, the housing price is calculated
by

𝐻𝑡 = 𝐻0 exp
(

(𝜇 − 1
2
𝜎2 − 𝜆𝑘)𝑡 + 𝜎𝑊𝑡 +

𝑁𝑡
∑

𝑖=1
𝑌𝑖

)

, (2)

where 𝜇 is the expected growth rate, 𝜎 is the volatility of the Brownian motion part, and 𝐻𝑡 is the house price at time 𝑡 just before
the jump. 𝑘 = 𝐸[𝑦𝑡 − 1] = exp(𝜇𝑗 + 𝜎2𝑗 ∕2) − 1, the expected value of a relative price jump 𝑦𝑡 − 1, is defined from the log-jump size
𝑌𝑡 = log 𝑦𝑡 ∼ 𝑁(𝜇𝑗 , 𝜎2𝑗 ). Note that a Poisson process 𝑁𝑡 with an intensity 𝜆 shows the total number of price jumps in the time interval
(0, 𝑡].

For BSM, we can find parameters using maximum likelihood estimation (MLE). However, for JDM, we cannot distinguish between
the price movement from jumps or from the Wiener process. The EM algorithm is one way to MLE with incomplete data (i.e., data
are omitted or censored). This problem can be addressed in our case because price movement due to jumps being not explicitly
distinguishable compared to GBM. A solution from the EM algorithm converges to the local maximum or saddle point. Instead of
using the original EM algorithm, we use GEM (Lange, 1995; Chen et al., 2010) because it uses up to the second derivatives.

Let 𝑌 = (𝑌1, 𝑌2,… , 𝑌𝑇 ) be the observed data and 𝑍 = (𝑍1, 𝑍2,… , 𝑍𝑇 ) be the hidden data. Let 𝑋 = (𝑌 ,𝑍) be the complete data.
After choosing the initial parameter 𝜃(0), the EM algorithm repeats the following two steps until the 𝑛th parameter reaches a preset
threshold.

1. E-step
Given 𝑌 and 𝑛th parameter estimates 𝜃(𝑛), we obtain the probability density function for the complete data 𝑋:

𝑓 (𝑋|𝑌 ; 𝜃(𝑛))

then calculate the Q-function

𝑄(𝜃|𝜃(𝑛)) ∶= 𝐸𝑋|𝑌 ,𝜃(𝑛) [log 𝑓 (𝑋|𝜃)]

2. M-step
We maximize the Q-function with respect to 𝜃: 𝜃(𝑛+1) = arg max𝜃 𝑄(𝜃|𝜃(𝑛)).

Unfortunately, there is no agreement on when to stop iterations and how to set an initial parameter. Ibrahim et al. (2008)
discuss the selection of a threshold to stop repetitions, and Karlis and Xekalaki (2003) suggest how to choose an initial parameter
for simple mixtures. Although these papers give us intuition to perform the EM algorithm, the main concern is on the computational
complexity of adding infinite terms. We, therefore, replace infinite summations with 50 summations because each term rapidly goes
to 0 (Honoré, 1998; Duncan et al., 2009). To briefly explain practical implications, we first take an initial parameter 𝜇, 𝜎 as the
parameter using the MLE in BSM. For other parameters 𝜇𝑗 , 𝜎𝑗 , and 𝜆, we place an arbitrary number and run the EM algorithm until
we get real-value numbers by trial and error.

Here we use the 𝐿∞-norm as an error measure 𝜖 for the EM algorithm (Abbi et al., 2008). For the 𝑛th parameter 𝜃(𝑛),

𝜖(𝑛) ∶= 𝑚𝑎𝑥
|

|

|

|

𝜃(𝑛) − 𝜃(𝑛−1)
|

|

|

|

.

And we iterate the EM algorithm for a predetermined threshold 10−4 until the following condition does not hold:

𝜖(𝑛) ≥ 10−4 when iteration ≤ 100,000.

Duncan et al. (2009) consider the BSM and JDM simultaneously when deriving the formula to apply the EM algorithm. In
2

contrast, Chen et al. (2010) assume that JDM is appropriate for analyzing data and estimating corresponding parameters using
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Fig. 1. Log-price change in housing markets.

GEM. Using the likelihood ratio test, they verify whether the assumption of jumps is proper or not. In this research, we estimate
parameters by MLE, assuming BSM is true, and by GEM, assuming JDM is true. We then verify which method is appropriate using
a simulation. For the derivation, see Chen et al. (2010) and the supplementary material.

Given the 𝑛th parameter estimates 𝜃(𝑛) = (𝜇(𝑛), 𝜎2(𝑛), 𝜇𝑗 (𝑛), 𝜎𝑗
2
(𝑛), 𝜆(𝑛)), we get the formula

𝜃(𝑛+1) = 𝜃(𝑛) −(𝜃(𝑛)|𝜃(𝑛))−1∇(𝜃(𝑛)|𝜃(𝑛)), (3)

where (𝜃|𝜃(𝑛)) = 𝜕2𝑄(𝜃|𝜃(𝑛))
𝜕𝜃𝜕𝜃𝑇 the Hessian matrix, and ∇(𝜃|𝜃(𝑛)) = 𝜕𝑄(𝜃|𝜃(𝑛))

𝜕𝜃 the first derivative of 𝑄-function.

3. Data

Residential property price indices (RPPIs) summarize the price change for dwellings. There are four main approaches to calculate
RPPI (Eurostat, 2013). In this paper, we use the repeat sales method, widely used by the Standard and Poor’s CoreLogic Case–Shiller
Home Price Index (Case–Shiller Index) and the U.S. Federal Housing Finance Agency House Price Index (FHFA Index). The repeat
sales method tracks the repeated transaction price using three price levels (low, middle, and high) in the specified locality to measure
monthly housing price for a single entity. It assumes constant-quality so that repairing costs are not considered. The major difference
between the Case–Shiller and FHFA indices is that the former is value-weighted while the latter is equally weighted. We follow the
former1 because many national financial institutions that announce housing prices use the value-weighted repeat sales methodology.

We collect index data for six cities. Data from January 1987 to October 2019 for Los Angeles and Boston in the United States are
collected from S&P Dow Jones Index. Single-family housing price data for Tokyo, Japan from April 1984 to August 2019 are obtained
from the Bank for International Settlements. Housing purchase price composite index data from January 1986 to December 2019
for Seoul and Busan, Korea are collected from KB Commercial Bank, as their statistics are preferred by practitioners and researchers.
Lastly, MLS home price index data from January 2005 to December 2019 for Vancouver, Canada, which describes housing price for
a single family, are obtained from the Canadian Real Estate Association. We show the log-price change in Fig. 1, which shows that
it is difficult to specify the jump effects and internal variations. Price indices are not seasonally adjusted because we are interested
in modeling the transaction price through asset pricing methods.

4. Discussions

To select the most suitable model, we divide the data into training and testing sets in the ratio of 80:20 as this is a commonly-used
rule-of-thumb ratios2 in simulation studies. We estimate five parameters of JDM using the GEM algorithm and two BSM parameters
using the MLE from the training data. We then forecast the interval-ahead price using a Monte Carlo simulation (Tashman, 2000;
Stock and Watson, 2002).

After fixing a forecast interval and starting at the last price of the training data, we simulate the price one forecast interval
later, 100,000 times, including the antithetic sampling. We then simulate the price from the real price, which is 1 month after the

1 One may use the US housing price data from other sources like the Zillow index. Unlike the Case–Schiller index, the Zillow index only uses the 35th to 65th
ercentile (mid tier) of home values as a single family index, and provides seasonally adjusted prices. We have applied the proposed method to the seasonally
djusted CS and Zillow indices for comparison and obtained similar results for LA and Boston.

2 This 80:20 ratio is based on the Pareto Principle. More theoretical approach can be found in Amari et al. (1997), Guyon (1997) and Efron and Tibshirani
3

1997).
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Table 1
Estimated parameters for housing markets.
Sources: KB Bank (Korea), BIS (Japan), CREA (Canada), S&P Global (US). Data cover the period 1986:1–2019:12 (Korea), 1984:4–2019:8 (Japan), 2005:1–2019:12
(Canada), and 1987:1–2019:10 (US).

City (training dataa/total data) Model 𝜇 𝜎 𝜇𝑗 𝜎𝑗 𝜆

Seoul, Korea (326/408) JDM 0.037465 0.013382 0.0059207 0.013885 5.4914
BSM 0.0375 0.0383 – – –

Busan, Korea (326/408) JDM 0.034495 0.020583 0.018259 0.0054716 1.7446
BSM 0.0346 0.0347 – – –

Tokyo, Japan (340/425) JDM 0.0062499 0.067934 0.0005078 0.025458 10.317
BSM 0.0063 0.1063 – – –

Vancouver, Canada (144/180) JDM 0.085348 0.029724 −0.0026565 0.015685 4.7414
BSM 0.0854 0.0458 – – –

Los Angeles, United States (315/394) JDM 0.044678 0.037479 −0.015535 0.012962 1.2172
BSM 0.0447 0.0435 – – –

Boston, United States (315/394) JDM 0.04257 0.0050749 −0.004397 0.0015148 21.532
BSM 0.0311 0.0323 – – –

aParameters are estimated from 80% of total data and initial price is set as 100.

Table 2
Interval-ahead simulation result for housing markets.

City (testing data) Model 6 month 12 month 24 month

MSE MAE MSE MAE MSE MAE

Seoul (82 months) JDM 11 10 14* 12* 9 12*
BSM 9 10 6 8 11 8

Busan (82 months) JDM 20* 20* 20* 20* 20* 20*
BSM 0 0 0 0 0 0

Tokyo (85 months) JDM 10 10 5 7 12* 6
BSM 10 10 15* 13* 8 14*

Vancouver (36 months) JDM 14* 14* 11 15* 12* 15*
BSM 6 6 9 5 8 5

Los angeles (79 months) JDM 11 11 15* 13* 14* 11
BSM 9 9 5 7 6 9

Boston (79 months) JDM 20* 20* 20* 20* 20* 20*
BSM 0 0 0 0 0 0

Notes: The table shows the number of better predicted models out of 20 seeds, and * indicates the fitted model to the data.

beginning price at the previous step. These steps are repeated until we reach the end of the testing data. Finally, we compare the
mean squared error (MSE) and the mean absolute error (MAE) of each model, selecting the one with the least errors. For observed
data 𝑌 and predicted data 𝑌 , MSE and MAE are defined as: MSE = 𝐸[(𝑌 − 𝑌 )2] and MAE = 𝐸[|𝑌 − 𝑌 |].

In Table 1, we show the number of the price data and the size of the training data used after modifying the beginning housing
rice to 100. We have 408 months’ data for Seoul and estimate parameters from 326 months’ (80%) data. We further apply the
ethod to all other cities.

The validity of the model is not guaranteed using only one measure, as the housing price is time-dependent. Therefore, we
alculate several measures using different random number generators3 to check for consistency. We verify which model is suitable
n Table 2 with 6 -, 12 -, and 24-month forecast intervals and 20 different seeds.

Typically one calculates the model accuracy with confidence intervals assuming normal approximation. A typical way to obtain
obustness is to repeat the simulation with different random seeds and compute the average performance. Instead of showing
ummary statistics calculated from normal approximations, we abridged the number of more effective models from the 20 seeds
nd place * against the more accurate models.

The advantage of our implications is that we considerably explain housing prices and include external shocks in the simple price
odel. Seoul, Busan, Vancouver, Los Angeles, and Boston are better analyzed using JDM, although the results occasionally vary
ith time intervals and measures.

Housing markets in Seoul and Busan are well explained by JDM. The average jump frequency 𝜆𝛥𝑡 is 5.49 × 1∕12 = 0.45 for Seoul
nd 0.14 for Busan per year. Notably, housing markets in Seoul and Busan have experienced ‘‘positive’’ jumps on average, which
eans external factors including government policies increase housing prices. These two major Korean cities have experienced

apid economic growth from the 1960s to the 1990s, and the government has announced many policies to control housing prices.

3 Seed 0, 1000,… , 19000 by the Mersenne Twister on MATLAB R2020b.
4
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However, most price stabilizing policies have been ineffective in lowering the price; instead, they acted as boosters (Kim and Cho,
2010).

Vancouver’s housing market is also suited to JDM. The average jump frequency is once in 3 years, and the average price jumps
ize is negative. The trend of rapid inflated housing price can be explained by high drifts in the estimated parameters, and negative
hocks (negative price jumps) are incorporated in the equilibrium model. This is consistent with previous studies of the Vancouver
ousing market that analyze the reasons for rapid price rise (Moos and Skaburskis, 2010; Grigoryeva and Ley, 2019).

The simulation result for Los Angeles is compatible with JDM. Tax regulations and limited housing supply in California are
nown to increase the price (Quigley and Raphael, 2005). As shown in Table 1, the average jump frequency 𝜆𝛥𝑡 in Los Angeles

is once a decade, and expected price jumps are negative. Note that testing data start from around 2013, after the third wave of
quantitative easing by the Federal Reserve due to subprime mortgage crisis around late 2008 (Cukierman, 2019). This financial
crisis is incorporated in the expected price jump as a large negative value.

The result of Boston housing market is interesting. The price change is comparatively small (mostly within the range of −0.02
to 0.02) so one may expect that it will be better described by internal variations. Our results shows that there are 1.79 jumps per
year on average, and this jump model depicts the data very well.

BSM is appropriate for the housing markets of Tokyo. The Tokyo housing market is a popular subject for real estate economists
due to its housing price bubble during 1986–1991 and bubble collapse until 2001. McMillen and Shimizu (2020) decomposed
changes in the house price distribution in Tokyo across time into changes due to differences in the explanatory variables and changes
due to coefficients changes in quantile regression over time. Tokyo housing prices fluctuate too much and cannot be explained by
JDM assuming ‘‘instant’’ and ‘‘rare’’ jumps. Moreover, the implicit assumption of external shocks, incorporated as negative price
jumps in JDM, is not well-matched to the recession situation. Long-term negative shocks that may change the market structure
could be inappropriate for a JDM analysis.

Although we have analyzed the housing market with the house price index, these indices may not reflect enough all the variables
in the housing market. For example, the owners’ estimated value of the main residence is a valuable source to study housing market
dynamics (Lepinteur and Waltl, 2020), but this is not included in current price indices.

5. Conclusion

We reviewed the EM algorithm and discussed its application to JDM that uses hidden jump data. Several practical considerations,
such as selection of initial points, error measures, and stopping criterion, in applying the EM algorithm were proposed. Data related to
housing markets were explained and six city housing markets selected. Jump diffusion parameters were estimated by the gradient EM
algorithm, and housing prices predicted by the Monte Carlo simulation. We compared the JDM results with typical BSM prediction
estimated by the maximum likelihood method and simulated with antithetic sampling.

Our work finds that JDM with EM algorithm is effective in discovering the housing market structure in most cases. This result
depicts well the equilibrium housing price structure and jump risks in city housing markets, so it is convenient to use this method
to predict a price and corresponding mortgage-related products. It is not effective in some cases, however, because JDM assumes
instant and rare external impacts to the price structure, which is not appropriate for analyzing the price data during long recessions.

For future studies, one can think about variations on basic asset pricing models. JDM may be insufficient to cover the price
structure; instead, one can use other models that use log-uniform, or double exponential distributions. Research using period
decomposition by certain events such as the bubble collapse at Japan or the subprime mortgage crisis can be discussed further,
as such events may change entire market structures.
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