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A B S T R A C T

The decision-making on portfolio investment is fundamental in the financial market, but getting the optimal
strategy is challenging due to high uncertainty and massive noise in the market. Deep Deterministic Policy
Gradient (DDPG), proposed by Lillicrap et al. (2015), is a deep Reinforcement Learning (RL) algorithm that
made remarkable achievements in the financial perspective. Although the applications of RL in financial trading
are well-developed, it is surprising that most of the literature ignores the possible risk of rare occurrences
of catastrophic events and the effect of the worst-case scenarios on trading decisions. In this paper, we first
develop a novel deep RL algorithm, called Hierarchical DDPG, that combines the classical DDPG algorithm and
the Hierarchical RL structure to control the risk of portfolio investment. Second, we adapt the distributional
DDPG method for portfolio management problems, which aims to maximize the 𝛼-percentile expectation based
on the distribution of future returns. A real world dataset is used to validate the performance of our proposed
models. The experimental results show that our proposed models outperform the market and classical DDPG,
and moreover, both approaches provide effective methods of constructing a risk-sensitive policy to protect
investors from suffering a huge loss.
1. Introduction

Portfolio management is a decision-making process that allocates
investment funds to gain maximum profit and relatively lower risk
based on individuals’ goals, risk preferences, and investment horizons.
The foundation of modern portfolio theory can be traced back to the pi-
oneering work of Markowitz (1952), in which his Mean–Variance anal-
ysis is a representative methodology in the framework of return–risk
trade-off analysis. The original Mean–Variance theory is developed in
a mathematical skeleton that constructs a portfolio that maximizes the
expected return for a given degree of risk. The disadvantage of the orig-
inal Mean–variance model is that when a portfolio has high return and
volatility, investors might give up the strategy of high returns to remain
at low risk. Moreover, there is much noise and uncertainty in the finan-
cial market, which leads to inaccurate values of the mean and variance.

Over the last few decades, many studies investigate the applica-
tion of RL algorithms to financial market trading, and try to predict
the price movements or trends by using historical market data. The
advantage of RL learning technology in portfolio optimization is that
the algorithm can thoroughly learn and extract useful information
from market history, without any advanced knowledge and experience
in financial markets, and without making any assumptions about the
models. The application of RL in portfolio management problems starts
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from 1998. Moody and Saffell (2001), Moody, Wu, Liao, and Saffell
(1998) first propose a recurrent RL algorithm for portfolio optimization
problem and construct assets allocation systems. Both of these studies
aim to maximize the differential Sharpe ratio, that is, to maximize risk-
adjusted returns by considering transaction costs. The disadvantage of
using the differential Sharp ratios is that it penalizes returns exceeding
a certain value and takes more weight on recent returns. In addition,
the differential Sharpe ratio cannot distinguish the potential growth
trend of the portfolio. In another attempt by Almahdi and Yang (2017),
they extend the recurrent reinforcement learning approach using an ad-
justed objective function and seek an optimal weight portfolio strategy
under the expected maximum drawdown risk measure. However, these
existing models have fixed the number of shares for trading. In reality,
when the buying or selling signal occurs in the market, it is necessary
to determine how many shares to buy or sell. Trading a fixed number
of stocks in each transaction does not reflect the real market situation
and affects the total profits. With the development of deep RL, deep RL
has demonstrated the capability to learn complex policies from many
types of environments.

Deep Q-network (DQN) is one of the most popular methods in
deep RL. As the approximation of the Q-value function, the neural net-
work can be applied to approximate the reward by taking actions and
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pursuing policies from a given state. Bertoluzzo and Corazza (2012),
Chen and Gao (2019), and Park, Sim, and Choi (2020) apply DQN to
portfolio management problems and make remarkable achievements.
The advantage of DQN is that it does not require the labeled data
that suffer from the constraints and bias of data. It can automatically
adapt to the changes in the underlying data distribution, thereby it is a
suitable method for the dynamic of the financial market. However, their
actions are limited to the discrete action space while the actions are
continuous in portfolio management problems. To overcome this issue,
DDPG is proposed by Google DeepMind (Lillicrap, Hunt, Pritzel, Heess,
Erez, Tassa, Silver, & Wierstra, 2015), a type of actor–critic based DRL
algorithm that supports the continuous action space encountered in
portfolio optimization problems. Jiang and Liang (2017) and Xiong,
Liu, Zhong, Yang, and Walid (2018) present innovative approaches
based on DDPG to solve the trading problem of the optimal trading
position at each transaction in stock market and cryptocurrency market.
The experimental results of their evaluation take into consideration
transaction costs and prove the effectiveness of the algorithms in port-
folio management. The advantage of DDPG is that it can deal with
the problem of high-dimensional continuous action space well, and its
purpose is to learn a policy function directly, instead of approaching
the Q-value function.

Hierarchical Reinforcement Learning (HRL) is a promising method
that expands the traditional reinforcement learning methods by de-
composing the elaborate and intricate problems into sub-problems
and effectively solving each sub-problem. The HRL method has some
advantages, such as it is easier to be trained, and solving each sub-
problem individually will improve its reusability, which will accelerate
the learning process. HRL has been devoted to learning these difficult
tasks for a long time, the multi-layer strategies are trained to make
decisions and control at a higher level of temporal and behavior ab-
straction (Barto & Mahadevan, 2003; Dayan, 2002; Dietterich, 1998;
Nachum, Gu, Lee, & Levine, 2018). In general, by having a hierar-
chy of policies, only the lower-level policies execute actions to the
environment, and the higher-level policies are trained to distribute
the sub-tasks to the lower-level policies. Although the applications of
deep RL algorithms in the financial market are well studied, most
of the previous works only consider maximizing the total profit, and
surprisingly, they ignore the impact of possible disasters.

Obtaining risk-sensitive policies in portfolio management problems
has been studied for making optimal investment decisions depending
on risk preference. Traditional stochastic control algorithms were first
used to solve portfolio optimization problems in 1995. A conventional
approach utilizes diffusion process models to obtain the optimal trading
policies that maximize the expected utility of consumption and/or
terminal wealth. As shown by Hansen and Sargent (1995), a recursive
formulation of risk sensitivity preserves the tractability of risk-sensitive
control theory and produces decision rules with time-invariant risk
adjustments for infinite-horizon control problems. The solution of the
risk-sensitive control problem is identical to the solution of a particular
type of robust control problem. Hansen and Sargent (2001) describe the
links between the risk-sensitive control problem and the robust control
problem. Risk-sensitive control theory makes decision rules more risk-
responsive by including a risk-sensitive constraint parameter to the
objective of the decision-maker, which provides equivalent solutions
for the multiplier robust control problem. Bielecki and Pliska (1999)
propose a novel factor model in which underlying economic variables,
defined as ergodic Gaussian processes, affect the mean returns of
individual assets. They adopt risk-sensitive control theory to formulate
objective function with a risk-sensitive parameter. The approach differs
from the traditional stochastic control approach in that the investor’s
risk aversion is expressed clearly rather than implicitly through a utility
function. Solving the dynamic programming equation to maximize
the portfolio’s long run growth rate adjusted by asymptotic volatility
yields the best risk-sensitive policies. Fleming and Sheu (2000, 2002)
2

extend a more general model that is proposed by Bielecki and Pliska
(1999). They associate risk-sensitive control problems with the port-
folio management problem, and reformulate as infinite time horizon
risk-sensitive control problems. They eliminate the assumption that
the individual asset and economic factors have independent noise and
analyze the portfolio management problem without any constraints.
These studies mentioned above have applied risk-sensitive control the-
ory to the dynamic portfolio problem, in which the obtained optimal
trading strategies are associated with a risk-sensitive parameter. In our
proposed RL algorithms, the ideal risk-sensitive trading strategies are
also determined by the risk constraint and risk tolerance. In contrast
to the traditional risk-sensitive control theory, our proposed RL algo-
rithms are applicable to systems with continuous state space and entail
randomization or noise with any arbitrary distributions, with no prior
assumptions required. Furthermore, while the portfolio management
problem is a straightforward application of stochastic control theory,
it is rarely applied in reality. While there are various probable factors
for this lack of application, the computational tractability and statistical
challenges connected with model parameter estimation appear to be the
most important. In comparison to the traditional risk-sensitive control
paradigm, our proposed RL algorithms provide a more practical and
tractable way to achieve optimal asset allocation decisions.

In this paper, we aim to construct policies with risk awareness to
protect the investor under the worst-case scenarios. Inspired by Di-
etterich (1998), Nachum et al. (2018), we propose a novel RL algo-
rithm, called Hierarchical DDPG, which combines the classical DDPG
algorithm and the Hierarchical structure for portfolio management
problems. The original higher-level policy of HRL performs at an ab-
straction layer and distributes sub-tasks to the lower-level policy, which
corresponds directly to the target that the lower-level policy attempts
to reach. In our proposed Hierarchical DDPG, the higher-level policy
adjusts the lower-level policy’s actions to reduce the portfolio risk
and operates in the environment. We employ parametric Conditional
Value-at-Risk (CVaR) as a metric that measures the portfolio risk. HRL
is extended by adding the portfolio risk indicator, so that the agent
can implement different trading strategies for different scenarios. More
precisely, the lower-level policy of Hierarchical DDPG can be inter-
preted as a worker, aiming to maximize the total profit of the portfolio
when the portfolio risk is lower than the CVaR constraints. The higher-
level policy of Hierarchical DDPG can be interpreted as a manager,
whose purpose is to reduce the portfolio risk immediately based on the
worker ’s action when portfolio risk exceeds the investor’s tolerance. On
the other hand, most existing RL algorithms cannot learn risk-sensitive
policies because they only consider maximizing the average and do not
penalize the effects of rare occurrences of catastrophic events. Moti-
vated by Barth-Maron, Hoffman, Budden, Dabney, Horgan, Tb, Muldal,
Heess, and Lillicrap (2018), Tang, Zhang, and Salakhutdinov (2020),
we propose the distributional DDPG model for portfolio management
problems with the purpose of seeking a risk-sensitive policy that can
map the same state to different actions according to risk preference. We
construct the 𝛼-percentile expectation as our measure, which represents
the expected return under the distribution of the 𝛼-percentile at the
bottom of future return. The risk-sensitive policies can be obtained by
maximizing the 𝛼-percentile expectation based on different values of risk
parameter 𝛼. When 𝛼 is small, the agent focuses on maximizing the
performance of the worst-case scenario.

The main goal of this paper is to construct a risk-sensitive policy to
protect investors who may suffer a huge loss due to a financial crisis or
rare disaster events. In pursuing this goal, we have made the following
contributions. First of all, we design the Hierarchical DDPG algorithm
to learn the solution of the portfolio management problem. When the
portfolio risk is below the CVaR constraints, the Hierarchical DDPG
agent aims to maximize the total profit. But when the portfolio risk
exceeds the CVaR constraints, the priority of the Hierarchical DDPG
agent is to reduce the portfolio risk immediately, instead of maximizing
the total profit. Second, we propose the distributional DDPG method for

solving the portfolio optimization problem based on the uncertainty
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of future returns. According to the investor’s risk preference, the dis-
tributional DDPG algorithm can learn a risk-averse policy that yields
different actions depending on risk parameters, which is more robust
than the other RL algorithms.

The proposed approaches are then validated by a real-world dataset
from the U.S stock market.1 It is well known that the U.S. stock
market crashed during the Coronavirus pandemic in 2020, which was
one of the most dramatic stock market crashes in history. The circuit
breaker mechanism was triggered three times in a month, S&P500
plunged 1019 points, an equivalent of roughly 29%. This provides a
good example for verifying our algorithms. The three different com-
prehensive performance metrics are employed to assess the portfolio
performance from different perspectives. Our experimental results show
that Hierarchical DDPG is superior in portfolio management to the
classical DDPG method because it can significantly reduce or avoid a
loss caused by the occurrences of catastrophic events. Also, the results
demonstrate that the distributional DDPG agent can provide a risk-
averse policy depending on the risk parameter, and the 𝛼-percentile
xpectation is well-suited as the criterion of the distributional DDPG,
hich provides a good distributional critic that can be learned. Via the
xperimental study, we verify that two proposed algorithms provide
romising results, and our approaches are an effective way to protect
he investor who may suffer a huge loss due to a financial crisis or rare
isaster events.

This paper is organized as follows. Section 2 briefly reviews the
elated work in the area of portfolio management using RL. Section 3
ormulates the portfolio allocation problem. Section 4 introduces the
lassical DDPG algorithm. Section 5 introduces our proposed novel
odels. The core innovation of this paper, Hierarchical DDPG and Dis-

ributional DDPG for the portfolio management problem are presented
n this section. Section 6 displays the experiment results for classical
DPG, Hierarchical DDPG, and Distributional DDPG; and analyzes the
btained results. The final conclusion is presented in Section 7.

. Related work

In recent decades, portfolio optimization problems in financial trad-
ng have attracted much attention. As a primary approach in the field of
rtificial Intelligence (AI),2 deep RL is one of the most popular portfolio
anagement methods in the financial market due to its outstanding
erformance compared to expert traders. Deep RL has originally been
sed in applications of video games (Mnih, Kavukcuoglu, Silver, Rusu,
eness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, et al.,
015) and chess games (Silver, Hubert, Schrittwieser, Antonoglou, Lai,
uez, Lanctot, Sifre, Kumaran, Graepel, et al., 2018). Ormoneit and
lynn (2002) propose a kernel-based RL method to conquer the issue of

nstability in RL. Their method aims at learning within the framework
f average-cost and applying this method to portfolio management
roblems. Nevmyvaka, Feng, and Kearns (2006) propose a novel RL
lgorithm for optimizing transaction execution in the modern financial
arket by using NASDAQ market high-frequency datasets. Most traders

n the real world are dealing with large-scale diversified investment
ortfolios, but due to time constraints, they cannot deal with individual
tock and millisecond data, which makes it necessary to use automatic
rading agents. Their experiment results of real-world data on three
ASDAQ stocks demonstrate that RL can indeed result in significant

mprovements.
Deep RL that combines deep learning and RL algorithms can divide

nto three groups: policy gradient, value-based, and actor–critic. Policy

1 Real data is collected from Yahoo Finance.
2 In its 12th annual Global Alternative Fund and Investor Survey, November

018, Ernst & Young (EY) reports that more than 40% of hedge fund managers
dmit that they refer to AI to develop strategies to enhance performance for
aking greater profits in their investment process.
3

gradient algorithms learn directly the stochastic policy function that
maps a state to the probability of each action in action space. Value-
based algorithms approximate the Q-value function that represents the
expected accumulated rewards by given a state on taking an action and
pursuing a policy. The observed information is analyzed through the
neural network and output Q-values of each action, then the value-
based algorithms rely on the reward function to influence the output
of neural networks by backpropagation. The Temporal difference (TD)
learning method plays a key role in the actor–critic algorithm that
combines the value-based method and the policy-based method. The
policy-based network plays as an actor who outputs an action, while the
value-based network acts as a critic that appraises the action estimated
by the actor-network and generates the TD errors to update the actor
and critic network.

DQN is one of the value-based deep learning methods, which up-
dates the Q-value through a neural network instead of updating the
Q-table to maximize the cumulative rewards. In the absence of a
deterministic strategy, the algorithm will select the action that provides
the highest Q-value, and then the Q-value will be updated continuously
until it converges to the best action. Bertoluzzo and Corazza (2012) ap-
ply DQN to portfolio management problems. The action space is defined
as buying, selling or holding. To compare the performance of DQN and
Kernel-based RL algorithm, real-world data from three Italian stocks
are used to test and validate the performance. The experiment results
show the DQN algorithm performs better than the Kernel-based RL
algorithm. Chen and Gao (2019) combine the DQN and Deep Recurrent
Q-network for portfolio optimization problems and construct a daily
stock trading system that can automatically decide to make transactions
on each trading day. The Standard & Poor’s 500 Index ETF is used to
evaluate their trading system, and its daily prices are defined as the
state of reinforcement learning in the trading environment. Jeong and
Kim (2019) propose an automated system that can predict the number
of shares of each transaction by adding a deep neural network regressor
to DQN. In addition, they adopt a transfer learning technique to pre-
train neural networks when financial data is insufficiently large. The
experiment results reveal that the total profit is significantly increased
by forecasting the number of shares. Pendharkar and Cusatis (2018)
design an on-policy SARSA and off-policy Q-learning for the purpose
of asset allocation, train the RL agent with discrete action space, which
can maximize the return of portfolio or differential Sharp ratio, and
compare it with other RL methods in financial markets. Gao, Gao,
Hu, Jiang, and Su (2020) propose a novel DQN framework, which is
expressly designed for managing a multi-asset portfolio and allows DQN
agents to optimize their trading strategies by interacting with the real
financial market. Park et al. (2020) derive a novel portfolio trading
strategy for multi-asset management in the practical action space and
devise a transformation function that maps the infeasible action to
similar feasible actions.

Deep Deterministic Policy Gradient (DDPG), proposed by Lillicrap
et al. (2015), is one of the actor–critic algorithms that support con-
tinuous action space. Compared to DQN, the merit of DDPG is that
it can handle high-dimensional continuous action problems well, and
it directly outputs the optimal action instead of the Q-value. Jiang
and Liang (2017) implement the DDPG algorithm that adopts a con-
volutional neural network to solve the asset allocation problem in
the cryptocurrency market. They optimize the investment portfolio by
weighting all stocks, and make it suitable for continuous-time actions
to solve the discrete action space problem. A back-test experiment is
applied in the cryptocurrency market, and their experimental results
achieve positive results compared to another three RL portfolio man-
agement algorithms. Liang, Chen, Zhu, Jiang, and Li (2018) extend
DDPG by using a deep residual network and propose an adversarial
training method that improves the performance of deep RL. It has been
tested on the Chinese stock market that illustrates this approach can
significantly improve the training efficiency, average daily earnings and

Sharp ratio. Xiong et al. (2018) explore the potential of training DDPG
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Table 1
Notations for the trading system.

Symbols Explanations for the notation

𝑣𝑐𝑖,𝑡 Closing price of the 𝑖th asset in the 𝑡th trading period
𝑣ℎ𝑖,𝑡 Highest price of the 𝑖th asset in the 𝑡th trading period
𝑣𝑙𝑖,𝑡 Lowest price of the 𝑖th asset in the 𝑡th trading period
𝑣𝑜𝑖,𝑡 Opening price of the 𝑖th asset in the 𝑡th trading period
𝑣𝑣𝑖,𝑡 Volume of the 𝑖th asset in the 𝑡th trading period
𝑣𝑖,𝑡 Prices and volume of the 𝑖th asset in the 𝑡th trading period
𝑉𝑖,𝑡 Market information of the 𝑖th asset in the 𝑡th trading period
𝑤𝑡 Portfolio weight at the beginning of period 𝑡 + 1
𝑤′

𝑡 Portfolio weight at the end of period 𝑡 before execution
𝑝𝑡 Portfolio value at the beginning of period 𝑡 + 1
𝑝′𝑡 Portfolio value at the end of the period 𝑡 before execution
𝑦𝑡 Relative price change in the 𝑡th trading period
𝑟𝑡 Rate of return at the end of period 𝑡
�̂�𝑡 Mean value of returns for each asset at the end of period 𝑡
𝜇𝑡 Mean value of portfolio return at the end of period 𝑡
�̂�𝑡 Variance–covariance matrix of returns for each asset at the end of

period 𝑡
𝑡 Variance of portfolio return at the end of period 𝑡
𝑐 Commission rate for buying and selling
𝐶𝑡 Trading cost rate for the 𝑡th trading period
𝑛 Number of risky assets
𝑚 Window size

agents to obtain the optimal trading strategy in the stock market. They
construct a portfolio that consists of 30 stocks, and the trading envi-
ronment has been created by adopting the daily prices of each stock.
Compared to the traditional minimum-variance method, the DDPG
algorithm has gained higher benefits, which proves the effectiveness of
the algorithm. Wu and Li (2020) construct Gate Deterministic Policy
Gradient (GDPG) by adding the Gate Recurrent Unit into DDPG to
extract financial features from the time-series stock market data. The
performance of their proposed GDPG method is verified by comparing
the experimental results, which shows that the GDPG method gains a
higher return than the traditional DRL and it can spawn a more stable
performance even in the turbulent financial market.

Despite a tremendous amount of research and high-quality results
in the area of portfolio management by RL, there is very little liter-
ature that takes into account the portfolio risk, especially under the
worst-case scenarios, in constructing trading strategies. Every financial
product has its own risk and reward characteristics. The ultimate goal
of investors is to choose the best portfolio with the highest return, and
keep the portfolio risk below a certain degree. Thus, it is a significant
and important task for the RL agent to construct a risk-sensitive or risk-
averse policy for the investors who may suffer a huge loss caused by
rare events.

3. Portfolio allocation problem

Portfolio optimization requires continuous reallocation of an invest-
ment fund into different assets. Our trading agent does this allocation
periodically. The trading environment is formulated as follows. For the
convenience of readers, we provide Table 1 that includes all symbols.

3.1. Problem formulation

The individual asset consists of the opening, highest, lowest, closing
prices, and volume for each trading period. We denote by 𝑣𝑐𝑖,𝑡 the closing
price of the 𝑖th asset in the 𝑡th trading period. Similarly, 𝑣ℎ𝑖,𝑡, 𝑣

𝑙
𝑖,𝑡, 𝑣

𝑜
𝑖,𝑡

denote the highest, lowest, and opening prices of the 𝑖th asset in the
𝑡th period, respectively. Denote by 𝑣𝑣𝑖,𝑡 the volume of the 𝑖th asset in
the 𝑡th period. For the 𝑡th trading period, the prices and volume of each
individual asset can be expressed as

𝑣 =
[

𝑣𝑜 , 𝑣ℎ , 𝑣𝑙 , 𝑣𝑐 , 𝑣𝑣
]

, (3.1)
4

𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡
and the information the agent can observe on the 𝑖th stock at timestep
𝑡 is written as

𝑉𝑖,𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑜𝑖,𝑡, 𝑣ℎ𝑖,𝑡, 𝑣𝑙𝑖,𝑡, 𝑣𝑐𝑖,𝑡, 𝑣𝑣𝑖,𝑡
𝑣𝑜𝑖,𝑡−1, 𝑣ℎ𝑖,𝑡−1, 𝑣𝑙𝑖,𝑡−1, 𝑣𝑐𝑖,𝑡−1, 𝑣𝑣𝑖,𝑡−1
⋮ ⋱ ⋱ ⋱ ⋮

𝑣𝑜𝑖,𝑡−𝑚+1, 𝑣ℎ𝑖,𝑡−𝑚+1, 𝑣𝑙𝑖,𝑡−𝑚+1, 𝑣𝑐𝑖,𝑡−𝑚+1, 𝑣𝑣𝑖,𝑡−𝑚+1

⎤

⎥

⎥

⎥

⎥

⎦

, (3.2)

here 𝑚 is the window size.
For continuous markets, the relative price change in the 𝑡th trading

period is defined as the element wise division of 𝑣𝑐𝑖,𝑡 by 𝑣𝑐𝑖,𝑡−1:

𝑡 =
𝑣𝑐𝑡
𝑣𝑐𝑡−1

=
[

1,
𝑣𝑐1,𝑡
𝑣𝑐1,𝑡−1

,
𝑣𝑐2,𝑡
𝑣𝑐2,𝑡−1

,… ,
𝑣𝑐𝑛,𝑡
𝑣𝑐𝑛,𝑡−1

]𝑇
, (3.3)

here 𝑛 is the number of stocks in the portfolio. Note that the first
lement of 𝑦𝑡 represents the relative price of cash, therefore, it is always

1. We can use this relative price change vector to calculate the portfolio
value in a period. The portfolio weight vector is defined as

𝑤𝑡 = [𝑤0,𝑡, 𝑤1,𝑡, 𝑤2,𝑡,… , 𝑤𝑛,𝑡], (3.4)

where 𝑤𝑖,𝑡 is the fraction of investment on stock 𝑖 at the beginning of
period 𝑡 + 1 with the initial portfolio weight vector 𝑤0 = [1, 0, 0,… , 0],
nd ∑𝑛

𝑖=0 𝑤𝑖,𝑡 = 1 with each 𝑤𝑖,𝑡 ≥ 0. Note that the initial value of
he weight vector 𝑤0 indicates that all the investment capital is in the
iskless asset at the beginning. Assuming 𝑝𝑡−1 is the portfolio value at
he beginning of period 𝑡, ignoring transaction costs, the portfolio value
t the end of period 𝑡 can be calculated as

𝑡 = 𝑝𝑡−1𝑦𝑡 ⋅𝑤𝑡−1, (3.5)

here 𝑤𝑡−1 is the portfolio weight vector at the beginning of period 𝑡
and its 𝑖th element 𝑤𝑖,𝑡−1 is the proportion of stock 𝑖 in the portfolio
after a reallocation of capital.

The rate of return at the end of period 𝑡 can be calculated as

𝑡 =
𝑝𝑡
𝑝𝑡−1

− 1 = 𝑦𝑡 ⋅𝑤𝑡−1 − 1, (3.6)

and the corresponding logarithmic rate of return is given by

log(𝑟𝑡) = log(
𝑝𝑡
𝑝𝑡−1

− 1) = log(𝑦𝑡 ⋅𝑤𝑡−1 − 1). (3.7)

he mean value and variance of portfolio return can be formulated as

𝑡 = 𝑤𝑡 ⋅ �̂�𝑡, (3.8)

𝑡 = 𝑤𝑇
𝑡 �̂�𝑡𝑤𝑡, (3.9)

here �̂�𝑡 and �̂�𝑡 are the mean value and the variance–covariance
atrix of returns for each asset. Note that the �̂�𝑡 and �̂�𝑡 are estimated

every step based on the observation and window size. If there is no
transaction cost, the final portfolio value will evolve as follows

𝑝𝑇 = 𝑝0
𝑇
∏

𝑖=1
(1 + 𝑟𝑖) = 𝑝0

𝑇
∏

𝑡=1
𝑦𝑡 ⋅𝑤𝑡−1, (3.10)

where 𝑝0 is the initial investment amount.

3.2. Transaction costs

In the real world, buying or selling assets incurs a transaction cost,
usually in the form of commission fee. Assuming a constant commission
rate, we can recalculate the final portfolio value. At the beginning of
period 𝑡, the portfolio’s action vector is 𝑤𝑡−1. Due to the price changes
of assets in the market, the portfolio weight vector transforms to 𝑤′

𝑡 at
the end of period 𝑡:

𝑤′
𝑡 =

𝑦𝑡 ⊙𝑤𝑡−1
𝑦𝑡 ⋅𝑤𝑡−1

, (3.11)

here ⊙ is element-wise multiplication. The mission of the agent is to
′
reallocate portfolio weights from 𝑤𝑡 to 𝑤𝑡 by buying or selling relevant
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Fig. 1. The structure of our trading system.
assets. Paying all commission fees, this reallocation action shrinks the
portfolio value. If we set a constant commission rate 𝑐 ∈ [0, 1) for
buying and selling, then the trading cost rate of each period 𝐶𝑡 can be
approximated as (Hegde, Kumar, & Singh, 2018; Jiang & Liang, 2017):

𝐶𝑡 = 𝑐
𝑛
∑

𝑖=1

|

|

|

𝑤′
𝑖,𝑡 −𝑤𝑖,𝑡

|

|

|

, (3.12)

where 𝐶𝑡 ∈ [0, 1). Assuming all buying and selling trades are executed
at the end of a day, the portfolio value (3.5) at the end of day 𝑡 evolves

𝑝𝑡 = (1 − 𝐶𝑡)𝑝′𝑡 , (3.13)

where 𝑝′𝑡 represents the portfolio value at the end of period 𝑡 before
execution, that is, 𝑝′𝑡 = 𝑝𝑡−1𝑦𝑡 ⋅𝑤𝑡−1.

Therefore, the rate of return (3.6) can be rewritten as:

𝑟𝑡 =
𝑝𝑡
𝑝𝑡−1

− 1 = (1 − 𝐶𝑡)𝑦𝑡 ⋅𝑤𝑡−1 − 1. (3.14)

Hence, the final portfolio value can be expressed as

𝑝𝑇 = 𝑝0
𝑇
∏

𝑡=1
(1 − 𝐶𝑡)𝑦𝑡 ⋅𝑤𝑡−1. (3.15)

Fig. 1 demonstrates the dynamic relationships among portfolio values
and weight vectors on the time axis.

3.3. Assumption and restrictions

To simulate real-world market trades, we make several assumptions
to formulate the problem. First of all, the actions are only executed at
the end of a period. Second, we assume that the opening price is equal
to the closing price of the previous day. After-sales market transactions
are not allowed. Third, short selling is not allowed in our trading
environment. Finally, we also assume the market is sufficiently liquid
such that any transactions can be executed immediately with minimal
market impact.

4. The classical DDPG algorithm

Portfolio management is a financial decision-making task, which
aims at boosting the total profits or returns and lowering the risk
via asset allocation. The asset allocation process can be constantly
changed, so we require an off-policy agent using a DRL algorithm that
maps a high dimensional state space to a high dimensional continuous
action space. DDPG is an actor–critic based deep RL algorithm proposed
in Lillicrap et al. (2015). It uses a neural network as a Q-function
approximator and proposes a replay buffer to improve convergence
to the optimal policy, because the proposed replay buffer resolves the
problem that the learned action function is relatively unstable.

The classical DDPG algorithm has been developed by a Markov
decision process, which consists of a state space , action space ,
5

an initial state distribution 𝑝(𝑠0), transition dynamics 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), and
reward function 𝑟(𝑠𝑡, 𝑎𝑡). The DDPG algorithm includes four neural net-
works: the actor network, the critic network and their respective target
networks. In the initial stage, we randomly initialize each network and
reset the replay buffer, and the DDPG agent aims to learn from inter-
action with the environment. At the beginning of the training process,
the current state, next state, action and the immediate reward from
the environment are stored in a replay buffer, then DDPG assembles
a mini-batch from the replay buffer and feeds it to both the actor,
critic, and their target networks. For each sample mini-batched from
the replay buffer, the target actor network produces a target action
according to the next state; the target Q-value is generated by the target
critic network associated with the next states and target action. The
target Q-values of the current actions and states are calculated from
the immediate rewards and the discounted Q-values for the next states
via the Bellman equation. The critic network is updated by minimizing
the TD-error, calculated as the difference between target Q-value and
actual Q-value, the actor network is then trained by adopting the policy
gradient for the critic network. Finally, the target network weights are
updated using a soft updates strategy from actor and critic networks.
A soft update strategy includes smoothly mixing the regular network
weights with target network weights. The structure of classical DDPG
is shown in Fig. 2.

For the portfolio allocation problem, at each trading time 𝑡, we as-
sume the DDPG agent only observes the market information of OHLCV
data. With such an assumption, the observation 𝑠𝑡 can be expressed as:

𝑠𝑡 =
[

𝑉1,𝑡, 𝑉2,𝑡,… , 𝑉𝑛,𝑡
]

, (4.1)

where 𝑉𝑖,𝑡 is defined by (3.2). We take the portfolio weight vector as
an action, so action vector 𝑎𝑡 is equal to weight vector 𝑤𝑡−1, where
𝑤𝑡−1 denotes the portfolio weight vector at the beginning of period 𝑡.
The DDPG agent aims to maximize the total profit, which is equivalent
to maximizing the logarithmic return. Therefore, the reward function
𝑟(𝑠𝑡, 𝑎𝑡) taking into account the transaction cost is defined as

𝑟(𝑠𝑡, 𝑎𝑡) = log
𝑝𝑡
𝑝𝑡−1

= log((1 − 𝐶𝑡)𝑦𝑡 ⋅𝑤𝑡−1). (4.2)

Thus, we have the immediate reward at each timestep that avoids the
sparsity of the reward problem. At each timestep 𝑡, the agent takes an
action 𝑎𝑡 based on the current observation 𝑠𝑡, and receives a reward
𝑟(𝑠𝑡, 𝑎𝑡). The total discounted future rewards until timestep 𝑇 is given
by

𝑅𝑡 =
𝑇
∑

𝑖=𝑡
𝛾 𝑖−𝑡𝑟(𝑠𝑖, 𝑎𝑖), (4.3)

where the discount factor 𝛾 ∈ [0, 1]. The objective of reinforcement
learning is to learn a policy by maximizing the expected discounted
future rewards given the current state

𝐽 = E
[

𝑅 |

|𝑠
]

. (4.4)
𝑡
|

𝑡
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Fig. 2. The structure of classical DDPG.
By the Bellman equation, it allows us to compute the Q-value by
recursion:

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = E
[

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))
]

. (4.5)

The parametrized actor function 𝜇(𝑠|𝜃𝜇) specifies the current policy
by deterministically mapping states to a specific action 𝜇 ∶  → .
The critic network 𝑄(𝑠, 𝑎) is updated by minimizing a squared TD-error
below:

𝐿 = 1
𝑁

∑

𝑖

[

𝑦𝑖 −𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄)
]2
, (4.6)

where 𝑦𝑖 = 𝑟(𝑠𝑖, 𝑎𝑖) + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇
′ )|𝜃𝑄′ ) and 𝑁 is the number of

transitions mini-batched from replay buffer.
Note that 𝑦𝑖 is calculated by a separate target network which is

softly updated, 𝑄′(⋅) and 𝜇′(⋅) represent the target critic and actor
network with the parameter 𝜃𝑄′ and 𝜃𝜇′ , respectively. The actor is
updated by the following gradient of 𝐽 with respect to the parameter 𝜃𝜇
based on the policy gradient theory from Silver, Lever, Heess, Degris,
Wierstra, and Riedmiller (2014)

∇𝜃𝜇𝐽 = E
[

∇𝜃𝜇𝑄(𝑠, 𝑎||
|

𝜃𝑄)||
|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡|𝜃𝑄)

]

= E
[

∇𝑎𝑄(𝑠, 𝑎||
|

𝜃𝑄)||
|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡)

∇𝜃𝜇𝜇(𝑠|𝜃𝜇)
|

|

|𝑠=𝑠𝑡

]

.
(4.7)

5. Proposed approaches

5.1. The distributional DDPG model

Although most deep RL aims to optimize the decision-making rule in
terms of the expected future discounted rewards, the agent sometimes
for some specific purpose aims to seek a big win on rare occasions or
avoid a rare likelihood of suffering a huge loss. To reduce the effects
of rare bad events, the distributional RL is proposed by Dearden, Fried-
man, and Russell (1998) and Engel, Mannor, and Meir (2005), which
aims to adopt a Gaussian distribution to approximate the distribution
of future returns and model the uncertainty under this approximate
distribution. Distributional RL has the benefit of considering the risks
that may exist when future returns are stochastic since the observable
state cannot capture the intrinsic randomness of the environment. In
6

addition, if there is a high variance or heavy tail in return distribution,
the strategy of maximizing average return may lead to over-estimation
of the expected future reward. Motivated by Barth-Maron et al. (2018),
Tang et al. (2020), and Bellemare, Dabney, and Munos (2017), we
apply the distributional RL algorithm to the portfolio management
problem, namely Distributional DDPG, which constructs a risk-sensitive
policy to reduce the effects of disaster events or potential losses (see
Fig. 3).

The standard Markov decision process (MDP) consists of a tuple
( ,,, , 𝛾), where  and  represent the state space and action
space respectively,  ∶  ×  → R denotes the reward function, 𝛾
denotes the discount factor, and  is the transition probability density
of moving the current state into the next state. The action space 
is assumed to be continuous. Suppose that 𝑅 is a random variable
for future return, 𝑝(𝑅|𝑠, 𝑎) is the probability distribution of future
returns, which is given the current state 𝑠 and action 𝑎. The 𝛼-percentile
expectation3 that represents the expected return under the bottom 𝛼-
percentile of the distribution over returns is employed as the criterion
of distributional RL. The objective function can be formulated as:

𝐽𝛼 = E[𝑅||
|

𝑅 ≤ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝛼), 𝑠], (5.1)

where 𝛼 ∈ [0, 1] is a risk parameter. When 𝛼 → 0, the strategy will
concentrate on doing well in the worst case, while when 𝛼 → 1, the
strategy aims to perform well in the average performance. We combine
the distributional RL with classical DDPG so that the critic learns to
model the distribution over the expected total discounted rewards. Our
proposed method combines the distributional RL and DDPG, which
enables critics to simulate the distribution of future returns. As long as
a good distribution can be learned by critics, then the actor network
is updated by backpropagating the gradient back through the critic
network.

Distributional DDPG includes an actor–critic network structure of
the DDPG algorithm, and contains a distribution of future return 𝑍(𝑠, 𝑎)
that is a mapping from state–action pairs to distributions over returns.
The distributional Bellman equation points out the distribution of

3 We note that some literature call this CVaR, but we do not use it here to
avoid confusion.
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Fig. 3. Distributional RL.
𝑍(𝑠, 𝑎) is evaluated by three associated random variables: the reward
𝑟, the next state–action (𝑠′, 𝑎′), and its return 𝑍(𝑠′, 𝑎′). The nature
of distributional return 𝑍(𝑠, 𝑎) is described by a following recursive
equation:

𝑍(𝑠, 𝑎)
𝐷
= 𝑟(𝑠, 𝑎) + 𝛾𝑍(𝑠′, 𝑎′), (5.2)

where 𝑈
𝐷
= 𝑉 indicates that the random variable 𝑈 has the same dis-

tribution pattern as 𝑉 . In here, 𝑍(𝑠, 𝑎) represents the inherent stochas-
ticity of the interaction between the agent and the environment. Then,
the transition operator 𝑃 𝜇 is defined as:

𝑃 𝜇𝑍(𝑠, 𝑎)
𝐷
= 𝑍(𝑠′, 𝑎′), 𝑠′ ∼ 𝑝(⋅|𝑠, 𝑎), 𝑎′ ∼ 𝜇(⋅|𝑠), (5.3)

and the distributional Bellman operator  𝜇 is given by

 𝜇𝑍(𝑠, 𝑎)
𝐷
= 𝑟(𝑠, 𝑎) + 𝛾𝑃 𝜇𝑍(𝑠, 𝑎). (5.4)

This implies that the two sides of a distributional equation relate to
the distribution of two independent random variables, and it can be
used to train the distributional reinforcement learning in many areas of
research. Similar to the expected Bellman operator, the distributional
Bellman operator can be proved to converge to the true return distri-
bution. The convergence theory of the distributional Bellman operator
has been proven by a contraction lemma, which needs to evaluate
the distance between two return distributions (Rowland, Bellemare,
Dabney, Munos, & Teh, 2018).

The Wasserstein metric is the main tool to measure the distance
between cumulative distribution functions, proposed by Bickel and
Freedman (1981). Different from the Kullback–Leibler (KL) divergence,
the Wasserstein metric is a true probability that takes into account
the probability of distances between various outcome events, which
leads to the Wasserstein metric being well-suited for the field that
exists an underlying similarity. For 𝑝 < ∞, the 𝑝th Wasserstein distance
between two probability distributions 𝐹𝑈 and 𝐹𝑉 is defined as (Olkin
& Pukelsheim, 1982):

𝑊𝑝(𝑈, 𝑉 ) =
(

∫

1

0

|

|

|

𝐹−1
𝑈 (𝑠) − 𝐹−1

𝑉 (𝑠)||
|

𝑝
𝑑𝑠

)1∕𝑝
, (5.5)

where 𝐹−1 is the inverse cumulative distribution function (CDF). As-
suming that 𝑈 ∼  (𝜇1, 𝐶1) and 𝑉 ∼  (𝜇2, 𝐶2), the 2-Wasserstein
distance simplifies to:

𝑊2(𝑈, 𝑉 ) = |𝜇1 − 𝜇2|
2 + 𝐶1 + 𝐶2 − 2(𝐶1𝐶2)

1
2 . (5.6)

As in Tang et al. (2020), we model 𝑍(𝑠, 𝑎) as a Gaussian distribution,
which provides a closed-form of the 𝛼-percentile expectation.4 The
output of the critic network can be expressed as the estimated mean
and variance of future returns 𝑍(𝑠, 𝑎) with weights 𝜃𝑄:

𝑓𝑐𝑟𝑖𝑡𝑖𝑐 (𝑠, 𝑎, 𝛼|𝜃𝑄) → {�̂�(𝑠, 𝑎, 𝛼), ̂(𝑠, 𝑎, 𝛼)}, (5.7)

4 Without this assumption, it requires choosing another algorithm to ap-
proximate the sample Bellman updates and minimize the Wasserstein metric
in each step, which is computationally too expensive.
7

where 𝑓𝑐𝑟𝑖𝑡𝑖𝑐 (𝑠, 𝑎, 𝛼|𝜃𝑄) denotes the critic network with input state 𝑠,
action 𝑎, and risk parameter 𝛼. We adopt Convolutional Neural Network
(CNN) for the critic network. Three hidden convolution layers with
Relu activation function are added following the input layer. Then,
we modify the output layer that predicts the estimated value of mean
and variance of the future returns. The Softplus activation function
is applied to predict the variance of the future returns, which keeps
the variance always positive. The convergence proofs5 for the critic
network are given in Appendix A.

With the benefit of the critic’s structure, the estimated �̂�(𝑠, 𝑎, 𝛼) and
̂(𝑠, 𝑎, 𝛼) are applied to calculate the 𝛼-percentile expectation in closed-
form. Let 𝛤 𝜇(𝑠, 𝑎, 𝛼) denotes the 𝛼-percentile expectation in given state
𝑠, executing action 𝑎, and following policy 𝜇 hereafter, the closed-form
of 𝛼-percentile expectation is formulated as:

𝛤 𝜇(𝑠, 𝑎, 𝛼) = E[𝑅|𝑅 ≤ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝛼), 𝑠, 𝑎] = �̂�(𝑠, 𝑎, 𝛼) −
𝜑(𝛼)
𝛷(𝛼)

√

̂(𝑠, 𝑎, 𝛼),

(5.8)

where 𝜑(⋅) = 1
√

2𝜋
𝑒−

𝑥2
2 is the standard normal p.d.f., and 𝛷(⋅) is its CDF.

Therefore, the objective function (5.1) can be rewritten as:

𝐽𝛼 = E[𝑅|𝑅 ≤ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝛼), 𝑠] = ∫𝑆
𝜌𝜇(𝑠)∫𝐴

𝜇𝜃𝑎 (𝑎|𝑠, 𝛼)𝛤
𝜇(𝑠, 𝑎, 𝛼)𝑑𝑎𝑑𝑠,

(5.9)

where 𝜌𝜇 denotes the stationary distribution over the state space given
the policy 𝜇.

Then, the actor is updated by the following deterministic gradient,
which adopts the chain rule to the 𝛼-percentile expected return with
respect to the actor parameters (Silver et al., 2014):

∇𝜃𝑎𝐽𝛼 = E
[

∇𝜃𝑎𝜇(𝑎|𝑠, 𝛼)�̂�(𝑠, 𝑎, 𝛼) −
𝜑(𝛼)
𝛷(𝛼)

∇𝑎

√

̂(𝑠, 𝑎, 𝛼)∇𝜃𝑎𝜇(𝑎|𝑠, 𝛼)
]

.

(5.10)

Note that the objective function 𝐽𝛼 is dependent on the risk levels (𝛼s).
In the training process, we uniformly sample 𝛼 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) at the
beginning of the episode and fix 𝛼 for the whole episode. During the
testing period, the policy 𝜇 can yield different actions in given the same
state 𝑠, conditioned on the setting of 𝛼. Intuitively, a small value of 𝛼
leads to conservative behavior while a larger value of 𝛼 leads to more
aggressive behavior (see Algorithm 1). The structure of Distributional
DDPG is displayed in Fig. 4.

5.2. The Hierarchical DDPG model

In this subsection, we propose a novel algorithm, called Hierarchical
DDPG, which adds the Hierarchical structure to the DDPG algorithm.
Original Hierarchical RL refers to the concept of decomposing RL prob-
lem into sub-problems (sub-tasks). Solving each sub-task will be more

5 We note that the 2-Wasserstein distance 𝑊2 cannot be directly used to
bound the variance difference.
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Fig. 4. The structure of Distributional DDPG.
Algorithm 1 Distributional DDPG
1: procedure Training
2: Randomly initialize critic and actor network of agent with weights

𝜃𝑄 and 𝜃𝜇 .
3: Initialize target actor network and critic network with weights

𝜃𝑄′
← 𝜃𝑄, 𝜃𝜇′ ← 𝜃𝜇 .

4: Initialize replay buffer 
5: for episode = 1,𝑀 do
6: Initialize an OU random process  for action exploration
7: Receive initial observation state 𝑠1
8: Sample 𝛼 ∼ Uniform(0, 1)
9: for 𝑡 = 1, 𝑇 do

10: Sample action 𝑎𝑡 = 𝜇(𝑠𝑡, 𝛼|𝜃𝜇) +
11: Observe reward 𝑟𝑡, next state 𝑠𝑡+1 from environment
12: Store transition {𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝛼} into 
13: Sample a random mini-batch of 𝑁 transitions from 
14: Using target network to approximate  𝜇𝑍(𝑠, 𝑎) distri-

bution by calculating the mean and variance from the critic
network.

15: Update critic network 𝜃𝑄 by minimizing Wasserstein
distance in equation (5.6)

16: Update actor network 𝜃𝜇 by using sample deterministic
policy in equation (5.10)

17: Update the target network by soft-update
18: 𝜃𝑄′

← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

19: 𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

20: end for
21: end for
22: end procedure

vigorous and efficient than solving the whole problem. The investor’s
goal is to select the best portfolio with the highest total profit and
lowest portfolio risk for his/her investment. However, when there is a
chance of gains and losses, most investors would prefer to avoid losses.
Our Hierarchical DDPG algorithm utilizes the structure of Hierarchical
RL in which the two-level mechanism allows the agent to avoid the
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potential loss, and balance the portfolio profit and risk for different
scenarios.

The Hierarchical DDPG framework develops from classical DDPG
and Hierarchical RL, which consists of lower-level and higher-level
policy. The lower-level policy is an actor–critic based structure, and it is
interpreted as a worker that selects primitive actions at every time step
by maximizing the logarithmic rate of return when the portfolio risk
is lower than a certain level. The higher-level policy is also an actor–
critic based structure, and it is interpreted as a manager that selects
the action according to the observation state and the action generated
from the lower-level policy by minimizing the portfolio risk when the
portfolio risk exceeds the tolerance of investors. In other words, the
manager makes an adjustment to reduce the portfolio risk based on
the worker ’s action when the portfolio risk exceeds a certain level of
risk. The critics of the manager and worker are used to evaluate their
works. More specifically, by exploiting the market information from the
environment, the worker observes the state from the environment, and
produces the action 𝑔𝑡 to maximize the total profit. Then, we employ
an indicator to check whether the portfolio risk exceeds the investor’s
tolerance. If the investor can afford the potential loss, then the action
𝑔𝑡 will be executed and received the rewards from the environment. If
not, the manager will adjust the worker ’s trading strategy and yield the
action 𝑎𝑡 based on the observation state and the worker ’s action 𝑔𝑡 to
reduce the portfolio risk. At the final stage, the manager will execute
the action 𝑎𝑡 in the environment. The main idea of Hierarchical DDPG
is displayed in Fig. 5.

Now, we introduce the indicator to measure the portfolio risk.
Conditional Value-at-Risk (CVaR) is often used as a measure of risk and
is also referred to as expected excess loss or expected shortfall. CVaR is
a coherent risk measure and more attractive compared to Value-at-Risk
(VaR) because it takes into account the contribution from the very rare
but very large losses. Rockafellar, Uryasev, et al. (2000) employ CVaR
as the risk measure and minimize CVaR to compute an optimal invest-
ment portfolio. Krokhmal, Palmquist, and Uryasev (2002) propose a
new approach for optimizing CVaR in portfolio optimization problems.
They extend the Rockafellar et al. (2000) approach by maximizing
expected returns under CVaR constraints. CVaR constraints are used to
limit the percentiles of the loss distribution and sculpt the loss distribu-
tion according to the decision makers’ preferences. Linear Programming
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e

Fig. 5. The main idea of Hierarchical DDPG.

(LP) approach is one of the standard approaches for solving CVaR
optimization problems. A piecewise linear function can approximate
the typical continuously differentiable CVaR function by adopting the
Monte Carlo simulation. In this paper, we apply the parametric CVaR
approach under the Gaussian distribution to measure the portfolio risk.
Parametric CVaR𝛼 can be formulated as a closed-form:

CVaR𝛼(𝑎𝑡) = 𝑡
𝜑(𝛷−1(𝛼))

𝛼
− 𝜇𝑡, (5.11)

where 𝜇𝑡 and 𝑡 are the mean and variance of the portfolio return
defined in (3.8), and 𝜑(⋅) is the standard normal p.d.f., 𝛷(⋅) is the
standard normal CDF, so 𝛷−1(𝛼) is the standard normal quantile. When
the portfolio risk is below the CVaR risk constraints (CVaR𝛼 ≤ 𝐶),
the lower-level policy aims to seek an aggressive trading strategy by
maximizing the total profit (logarithm rate of return). On the other
hand, when it exceeds the CVaR constraints (CVaR𝛼 > 𝐶), the main goal
is to reduce the portfolio risk instead of maximizing the total profit. The
higher-level policy makes an adjustment of trading strategy and aims to
seek a conservative trading strategy to reduce the risk by maximizing
the expected future discount reward of the higher-level policy. The
structure of Hierarchical DDPG is shown in Fig. 6.

Next we introduce the reward of the lower-level policy and higher-
lever policy. The reward of the lower-level policy is the same as in
the classical DDPG algorithm (see (4.2)), and the reward function for
higher-level policy is defined as

𝑟′(𝑠𝑡, 𝑔𝑡, 𝑎𝑡) = CVaR𝛼(𝑔𝑡) − CVaR𝛼(𝑎𝑡). (5.12)

This implies the main goal of higher-level policy is to reduce the portfo-
lio risk immediately compared with the lower-level’s action. Then, the
objective function for higher-level policy is given by

𝐽 (𝐻) = E[𝑅′
𝑡|𝑠𝑡], (5.13)

where 𝑅′
𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑟′(𝑠𝑖, 𝑔𝑖, 𝑎𝑖).
Define the 𝑄(𝐻) function for higher-level network as:

𝑄(𝐻)(𝑠𝑡, 𝑔𝑡, 𝑎𝑡) = E[𝑅′
𝑡|𝑠𝑡, 𝑔𝑡, 𝑎𝑡], (5.14)

where 𝑔𝑡 is the action from the lower-level policy, and 𝑎𝑡 is the action
from the higher-level policy.
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Table 2
Data description.

ETFs Description

SPY SPY is one of the most popular and oldest ETFs designed to track
the Standard & Poor’s 500 index. It holds a portfolio of 500
securities, which are selected by the S&P Committee to represent
large-cap companies in the United States. At present, the top 3
sectors in which SPY holds shares are technology, finance and
health care, and the top 5 stocks in the portfolio include Microsoft,
Apple, Amazon, Facebook and Berkshire Hathaway.

VGK VGK tracks all capitalization and market capitalization weighted
indices of developed European securities. It is a subset of the FTSE
global stock index series, covering about 98% of the global market,
and diversified enough to invest across various industries.

GXC GXC tracks the S&P China BMI, which is a rules-based index that
measures the performance of global equity markets. It includes
major share classes like A, B, H, red chips, P chips, and foreign
listings. The fund typically invests almost all (but at least 80%) of
its total assets in the securities comprising the index.

EWG EWG tracks a market-cap-weighted index of large and midcap
German companies. It aims to provide concentrated exposure to
large- and midcap segments of the German equity market, meaning
it covers the top 85% of the German companies by market cap. It
primarily consists of stocks traded on the Frankfurt Stock Exchange.

Applying the Bellman equation to (5.14), we have

𝑄(𝐻)(𝑠𝑡, 𝑔𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑔𝑡, 𝑎𝑡) + 𝛾𝑄(𝐻)(𝑠𝑡+1, 𝜇1(𝑠𝑡+1), 𝜇2(𝑠𝑡+1, 𝜇1(𝑠𝑡+1))),

(5.15)

where 𝜇1(⋅) is the policy from the lower-level, and 𝜇2(⋅, ⋅) is the policy
from the higher-level.

To update the higher-level policy network, the policy gradient with
respect to the parameter 𝜃𝜇2 is given by

∇𝜃𝜇2 𝐽
(𝐻) = E𝑠𝑡

[

∇𝜃𝜇2 𝑄
(𝐻)(𝑠, 𝑔, 𝑎|𝜃𝐻 )||

|𝑠=𝑠𝑡 ,𝑔=𝜇1(𝑠𝑡),𝑎=𝜇2(𝑠𝑡 ,𝜇1(𝑠𝑡)|𝜃𝜇2 )

]

= E𝑠𝑡

[

∇𝑎𝑄
(𝐻)(𝑠, 𝑔, 𝑎|𝜃𝐻 )||

|𝑠=𝑠𝑡 ,𝑔=𝜇1(𝑠𝑡),𝑎=𝜇2(𝑠𝑡 ,𝜇1(𝑠𝑡)|𝜃𝜇2 )
∇𝜃𝜇2 𝜇2(𝑠, 𝑔|𝜃𝜇2 )||

|𝑠=𝑠𝑡 ,𝑔=𝜇1(𝑠𝑡)

]

.

(5.16)

This is derived in the same way as (4.7). The Hierarchical DDPG
algorithm is given below (see Algorithm 2).

6. Experiment results

6.1. Data

We conduct various experiments to verify our proposed approaches
by using four different index ETFs: ‘‘SPY’’, ‘‘VGK’’, ‘‘GXC’’, and ‘‘EWG’’(se
Table 2). SPY is the S&P 500 index ETF, which measures the stock
performance of 500 large companies in the U.S. Market. VGK is the
index ETF for the European All Cap developed by FTSE, which tracks
the performance of major markets in Europe. GXC is one of the
most comprehensive China equity funds available to U.S. investors,
which is dominated by holding large-cap stocks and delivers greater
diversification from a security perspective. Lastly, EWG aims to provide
concentrated exposure to large and midcap segments of the German
equity market, meaning it covers the top 85% of the German companies
by market cap. It primarily consists of stocks traded on the Frankfurt
Stock Exchange. The dataset, obtained from Yahoo Finance, consists
of daily prices and volume data over a 10-year period from 2010-
01-01 to 2020-07-30. The training set and testing set are distributed
according to the ratio of 8:2. For the purpose of training and testing,
two independent trading environments are designed. In addition, short
selling is not allowed, and a commission rate of 0.25% will be deducted
for each transaction for all experiments.
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Fig. 6. The structure of Hierarchical DDPG.
Data Preprocessing
The absolute prices and volumes of the assets, i.e., opening, highest,

lowest, closing prices, and volume in the problem are not sensitive to
the agent for making any trading decisions, but the changes in prices
and volumes are important to the agent. Therefore, the input prices
and volumes to the network need to be normalized. To be specific, we
divide the opening, closing, highest, lowest prices by the closing price
on the last day of the period, and divide the volumes by the volume on
the last day of the period. For example, the input state with window
size 𝑚 and number of assets 𝑛 is given by

𝑠𝑡 =
[

𝑉 ′
1,𝑡, 𝑉

′
2,𝑡,… , 𝑉 ′

𝑛,𝑡

]

, (6.1)

where 𝑉 ′
𝑖,𝑡 is the information of the 𝑖th stock at time 𝑡 after normaliza-

tion, given by

𝑉 ′
𝑖,𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝑜𝑖,𝑡
𝑣𝑐𝑖,𝑡

,
𝑣ℎ𝑖,𝑡
𝑣𝑐𝑖,𝑡

,
𝑣𝑙𝑖,𝑡
𝑣𝑐𝑖,𝑡

, 1, 1
𝑣𝑜𝑖,𝑡−1
𝑣𝑐𝑖,𝑡

,
𝑣ℎ𝑖,𝑡−1
𝑣𝑐𝑖,𝑡

,
𝑣𝑙𝑖,𝑡−1
𝑣𝑐𝑖,𝑡

,
𝑣𝑐𝑖,𝑡−1
𝑣𝑐𝑖,𝑡

,
𝑣𝑣𝑖,𝑡−1
𝑣𝑣𝑖,𝑡

⋮ ⋱ ⋱ ⋱ ⋮
𝑣𝑜𝑖,𝑡−𝑚+1

𝑣𝑐𝑖,𝑡
,

𝑣ℎ𝑖,𝑡−𝑚+1
𝑣𝑐𝑖,𝑡

,
𝑣𝑙𝑖,𝑡−𝑚+1

𝑣𝑐𝑖,𝑡
,

𝑣𝑐𝑚,𝑡−𝑚+1
𝑣𝑐𝑖,𝑡

,
𝑣𝑣𝑖,𝑡−𝑚+1

𝑣𝑣𝑖,𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.2)

6.2. Evaluation metrics

Portfolio optimization problems involve determining the best asset
allocation for an investment fund in accordance with specific objec-
tives, such as maximizing portfolio return and minimizing portfolio
risk. Assessing the performance of a trading strategy objectively and
10
rationally can be a challenging and difficult task. An outperforming
trading strategy is not only expected to generate a higher profit but
also alleviate the portfolio risk associated with the trading activity.
In this subsection, three evaluation metrics are introduced to assess
the portfolio performance, that is, Accumulated return, Sharpe ratio, and
Maximum drawdown.
Accumulated return

The Accumulated return is one of the popular evaluation metrics
used to assess the portfolio profit. The higher Accumulated return
implies the portfolio yields a higher profit. Consider a portfolio having
the arithmetic return 𝑅𝑡 at time 𝑡, the accumulated return can be
calculated as

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 =
𝑡

∏

𝑖=1
(1 + 𝑅𝑖). (6.3)

This is the standard metric used to compare performance and relates
the wealth at time 𝑡, 𝑊𝑡, with the initial wealth, 𝑊0, as 𝑊𝑡 = 𝑊0 ×
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛. In this paper, all trading experiments adopt initial
wealth 𝑊0 = 1.
Sharpe ratio

The Sharp ratio is a performance metric that is widely and fre-
quently used in the fields of finance and portfolio management because
it takes into account both the profit and risk of the portfolio. This indi-
cator is developed by Nobel laureate William F. Sharpe, and expresses
as the excess return per unit of risk that is evaluated as the standard
deviation of return. The Sharp ratio can be written as follows:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐸(𝑅𝑡) − 𝑅𝑓 , (6.4)
𝜎(𝑅𝑡)



Expert Systems With Applications 198 (2022) 116807M. Wang and H. Ku

1

1
1

2

w

Algorithm 2 Hierarchical DDPG
1: procedure Training
2: Randomly initialize the critic and the actor networks of agent with

weights 𝜃𝑄 and 𝜃𝜇1 .
3: Randomly initialize the higher-level actor and critic networks with

weights 𝜃𝐻 and 𝜃𝜇2 .
4: Initialize target networks and critic networks with weights 𝜃𝑄′

←

𝜃𝑄 and 𝜃𝜇
′
1 ← 𝜃𝜇1 .

5: Initialize replay buffer 1 and 2.
6: for episode = 1,𝑀 do
7: Initialize an OU random process  for action exploration
8: Receive initial observation state 𝑠1
9: for 𝑡 = 1, 𝑇 do
0: Sample action 𝑔𝑡 = 𝜇1(𝑠𝑡|𝜃𝜇) +

11: Check the portfolio’s risk level
12: if CVaR ≤ C then
3: Observe reward 𝑟𝑡, next state 𝑠𝑡+1 from environment
4: Store transition {𝑠𝑡, 𝑔𝑡, 𝑟𝑡, 𝑠𝑡+1} into 1

15: Sample a random mini-batch of 𝑁1 transitions from
1

16: Set 𝑦𝑖 = 𝑟(𝑠𝑖, 𝑔𝑖) + 𝛾𝑄′(𝑠𝑖+1, 𝜇′
1(𝑠𝑖+1|𝜃

𝜇′1 )) for all 𝑖 ∈ 𝑁1

17: Update 𝜃𝑄 by minimizing loss 𝐿(𝜃𝑄) = 1
𝑁

∑

𝑖(𝑦𝑖 −
𝑄(𝑠𝑖, 𝑔𝑖|𝜃𝑄))2

18: Update the actor policy 𝜃𝜇1 using the sampled policy
gradient:

1
𝑁1

∑

𝑖
∇𝑔𝑄(𝑠, 𝑔|𝜃𝑄)|𝑠=𝑠𝑖 ,𝑔=𝜇1(𝑠𝑖)∇𝜃𝜇1 𝜇1(𝑠|𝜃𝜇1 )|𝑠=𝑠𝑖 . (5.17)

19: Update the target network by soft-update
20: 𝜃𝑄′

← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ .
21: 𝜃𝜇

′
1 ← 𝜏𝜃𝜇1 + (1 − 𝜏)𝜃𝜇

′
1 .

22: end if
23: if CVaR > C then
4: 𝑎𝑡 = 𝜇2(𝑠𝑡, 𝑔𝑡, 𝑎𝑡)

25: Store transition {𝑠𝑡, 𝑔𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1} into 2
26: Sample a random mini-batch of 𝑁2 transitions from

2
27: Set 𝑦(𝐻)

𝑗 = 𝑟(𝑠𝑗 , 𝑔𝑗 , 𝑎𝑗 ) +
𝛾𝑄(𝐻)(𝑠𝑗+1, 𝜇1(𝑠𝑗+1), 𝜇2(𝑠𝑗+1, 𝜇1(𝑠𝑗+1))) for all 𝑗 ∈ 𝑁2

28: Update 𝜃𝐻 by minimizing loss 𝐿(𝜃𝐻 ) = 1
𝑁2

∑

𝑗 (𝑦
(𝐻)
𝑗 −

𝑄(𝐻)(𝑠𝑗 , 𝑔𝑗 , 𝑎𝑗 |𝜃𝐻 ))2

29: Update the higher-level policy 𝜃𝜇2 using the sampled
policy gradient:

1
𝑁2

∑

𝑗
∇𝑎𝑄

(𝐻)(𝑠, 𝑔, 𝑎|𝜃𝐻 )||
|𝑠=𝑠𝑗 ,𝑔=𝜇1(𝑠𝑗 ),𝑎=𝜇2(𝑠𝑗 ,𝜇1(𝑠𝑗 ))

∇𝜃𝜇2 𝜇2(𝑠, 𝑔|𝜃𝜇2 )
|

|

|𝑠=𝑠𝑗 ,𝑔=𝜇1(𝑠𝑗 )
.

(5.18)

30: end if
31: end for
32: end for
33: end procedure

where 𝑅𝑓 is a risk-free return, 𝐸(𝑅𝑡) and 𝜎(𝑅𝑡) represent the expecta-
tion and standard deviation of returns, respectively.

Maximum drawdown

Maximum drawdown (MDD) is another metric to assess the po-
tential loss that seeks the maximum change from the highest to the
lowest. It is dedicated to capital preservation that is the main anxiety
for most rational investors. For example, when the MDD is quite small,
it implies a minor loss from investment, and when an investment has
never been lost, the MDD would be zero. On the other hand, the
11
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worst possible maximum drawdown would be −100%, meaning the
investment is completely worthless. The maximum drawdown can be
calculated as follow:

𝑀𝑎𝑥 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = max
𝑅𝑡 − 𝑅𝑡+1

𝑅𝑡
, (6.5)

here 𝑅𝑡 and 𝑅𝑡+1 represent the rate of return in period 𝑡 and 𝑡 + 1,
respectively.

6.3. The results

This subsection presents the experimental results of our proposed
methods and evaluates the effectiveness of our approaches. We obtain
the opening, highest, lowest, closing prices, and volume of four ETFs.
These four ETFs have different patterns, the movement of the closing
prices and their details are described in Fig. 7. These prices are ex-
pressed in the U.S. dollar. As shown in Fig. 7, GXC shows the most
gradual increase in these ETFs; SPY shows an upward trend but has
been more volatile; EWG and VGK do not show a particular movement.

6.3.1. The experimental results for DDPG
The DDPG agent is trained on the training environment and tested

on the testing environment separately.6 The window size of the trading
system is ten trading days, which indicates that the DDPG agent can
observe the prices and trading volumes in the past ten days. The
training process is carried for 500 iterations, and each iteration consists
of 128 steps until the actor and critic networks get convergence to the
optimal. To avoid convergence to local optimum policies, the weights of
actor and critic are saved for the best performance. The actor and critic
network adopts CNN with three hidden layers, and each convolution
layer is a fully-connected layer with the activation of ReLu. The weights
of actor and critic networks are randomly initialized at the beginning
of each episode. The Softmax outputs of the actor network generate the
actual corresponding portfolio weights.

Figs. 8 and 9 show the performance of DDPG with the ten-day
window size for the training and testing period, respectively. As shown
in Fig. 8, the portfolio value has surprisingly increased by 138.84% dur-
ing the training period; it achieves outstanding performance compared
to the market value. Here, the market value presents a portfolio that
consists of equally-weighted investment assets. The maximum draw-
down and Sharpe ratio of the DDPG portfolio are 8.66% and 80.48%,
respectively. In addition, Fig. 9 shows that the portfolio of DDPG has
given a 10.05% accumulated rate of return on investment at the end
of the testing period, and their maximum drawdown and Sharpe ratio
indices are 13.58% and 36.47%, respectively. These evidences indicate
that the trading strategy of the DDPG agent has a higher potential risk
and suffers a massive loss when the financial market crashes.

In addition, we test the effect of window size on the portfolio
performance. The different window sizes (5, 10, 20, 25) are applied to
our experiment, the experimental results during the testing period
are displayed in Table 3. While using window sizes of 20 and 25,
the accumulated return increases to 12.93% and 14.74%, improved
by 2.43% and 4.24% compared to the case of ten-day window size,
respectively. Furthermore, the Sharpe ratio rises to 38.44% and 39.94%
at the end of the testing period compared to the case of ten-day window
size. These imply that the DDPG agent can construct a better portfolio
when she observes more trading prices and volumes. One possible
explanation is that the DDPG agent can predicate more accurate trends
or movements based on more information she observed. The portfolio
performances with different window sizes for the training and testing
period are presented in Appendix B.

6 Programming Code is deposited in Code Ocean at https://codeocean.com/
apsule/0769244/tree/v1.

https://codeocean.com/capsule/0769244/tree/v1
https://codeocean.com/capsule/0769244/tree/v1


Expert Systems With Applications 198 (2022) 116807M. Wang and H. Ku
Fig. 7. The closing prices of each ETF.
Fig. 8. The portfolio value of DDPG under window size of ten-day during the training period.
6.3.2. The experimental results for distributional DDPG
Fig. 10 shows the price movements of the portfolio with different

risk parameters 𝛼 during the testing period with the ten-day window
size. Although the accumulated portfolio value has not increased much,
the maximum drawdown has significantly decreased. When 𝛼 = 5%,
the agent only takes into consideration the worst-case, the agent is
willing to choose cash instead of investing funds in other risky assets.
As 𝛼 increases, the agent is not willing to consider the extreme cases,
and aims to allocate more investment funds into these risky assets.
Therefore, we can see from Fig. 10 that the accumulated return in-
creases to 4.22% and 10.32% when risk parameter 𝛼 are 15% and
30%, respectively. Also, it reveals that the maximum drawdown of
the distributional DDPG portfolio decreases as the risk parameter 𝛼
decreases. This illustrates that the investor may suffer a larger potential
loss during the financial crisis when the investor is willing to tolerate
more risk. Furthermore, the Sharpe ratio increases as the 𝛼 increases,
which indicates that the earning per unit risk of this portfolio increases
when the agent is willing to take more risk. These points demonstrate
that Distributional DDPG can construct a more robust trading policy
according to the investor’s risk preference.

In addition, we test the effect of window size on the portfolio
performance, and the experimental results of the portfolio performance
12
with different window sizes and 𝛼s are shown in Table 3. No matter
what the value of windows size is, the optimal trading strategies
are very conservative when the agent only considers the worst-case
scenarios. When the window size is large, the agent observes more
information for decision-making. Thus she can learn more accurate
trends or price movements because the noise and uncertainty of the
market can be significantly reduced. For instance, when the window
size is 25, the agent is willing to allocate more investment funds into
risky assets instead of only holding cash even for the extreme case
of risk parameter 𝛼 = 5%. Therefore, the accumulated return under
window size of twenty-five-day is higher than in other window sizes
when the risk parameter 𝛼 is 5%. Overall, these experimental results
provide strong evidence to demonstrate that the distributional DDPG
method is an effective and efficient way to avoid a huge potential loss.
However, we find it hard to balance the total profit and portfolio risk.
If the agent only considers the worst-case scenario, the portfolio will
lose the potential gains; on the other hand, if the agent is willing to
take more risk, the agent has to face large possible losses.

6.3.3. The experimental results for Hierarchical DDPG
Fig. 11 shows the Hierarchical DDPG portfolio with different CVaR

constraints under the window size of ten-day. We obtain that the
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Fig. 9. The portfolio value of DDPG under window size of ten-day during the testing period.
Fig. 10. The portfolio value of Distributional DDPG with different risk parameters 𝛼 under window size of ten-day.
maximum drawdown has decreased in all cases, e.g., when the CVaR
constraint is 5%, the maximum drawdown is 10.05%, reduced by
3.54% compared to classical DDPG. We observe that the accumulated
rate of return and Sharpe ratio of Hierarchical DDPG have improved by
4.57% and 32.91%, respectively. Also, the case of the CVaR constraint
𝐶 = 13% provides the most significant maximum drawdown of 12.95%,
and the case of 𝐶 = 8% provides the highest Sharpe ratio of 76.83%.
These shreds of evidence illustrate that the Hierarchical DDPG model is
superior to DDPG to avoid losses in the recession market. Table 3 shows
the experimental results of Hierarchical DDPG with different CVaR
constraints and window sizes. Compared to classical DDPG, it reveals
that the Hierarchical DDPG algorithm performs better than the classical
DDPG method in perspective of the maximum drawdown in most cases
except the cases that window size is 20 or 25, and constraint 𝐶 is 8%.
13
The accumulated return and Sharpe ratio of Hierarchical DDPG are
higher than those of classical DDPG in many cases. For example, when
the window size is 5, the accumulated rates of return with different
constraints (5%, 8%, 13%) have improved by 1.77%, 6.2%, and 1.77%,
respectively. These experimental results demonstrate that our proposed
Hierarchical DDPG provides stable results with different window sizes
and constraints. Overall, the Hierarchical DDPG agent can achieve a
higher rate of return and Sharpe ratio compared to classical DDPG, and
moreover, control the short-term risk within a reasonable range.

In Fig. 12, we compare the performance of classical DDPG and
the proposed approaches during the testing period. For the window
size of ten-day, we display the case of CVaR constraint 𝐶 = 5% as
an example to present the performance of Hierarchical DDPG, and
the case of risk parameter 𝛼 = 30% as an example to present the
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Fig. 11. The portfolio value of Hierarchical DDPG with different constraints 𝐶 under window size of ten-day.
Table 3
Experimental results.

Window size DDPG Distributional DDPG Hierarchical DDPG

AR MDD SR 𝛼 AR MDD SR 𝐶 AR MDD SR

5 11.10% 13.59% 38.45% 5% 0.00% 0.00% 0.00% 5% 12.88% 10.30% 35.68%
15% 2.41% 9.88% 17.71% 8% 17.31% 11.70% 51.24%
30% 11.18% 13.59% 33.76% 13% 12.88% 11.70% 38.98%
50% 12.70% 13.59% 36.52%

10 10.50% 13.58% 36.47% 5% 0.00% 0.00% 0.00% 5% 15.07% 10.05% 69.38%
15% 4.22% 6.88% 21.10% 8% 17.30% 11.68% 76.83%
30% 10.32% 9.68% 34.05% 13% 16.00% 12.95% 58.14%
50% 11.67% 13.59% 34.61%

20 12.93% 13.59% 38.44% 5% 0.00% 0.00% 0.00% 5% 21.18% 10.30% 66.14%
15% 8.37% 9.95% 28.58% 8% 2.70% 14.23% 15.24%
30% 13.96% 13.59% 38.55% 13% 4.70% 13.28% 21.88%
50% 13.96% 13.59% 38.55%

25 14.74% 13.59% 39.94% 5% 8.37% 9.95% 28.58% 5% 8.60% 12.46% 32.37%
15% 13.77% 13.59% 38.23% 8% −0.31% 14.23% 9.30%
30% 13.77% 13.59% 38.26% 13% 13.72% 13.59% 38.14%
50% 13.77% 13.59% 38.26%

AR represents the accumulated return.
MDD represents the maximum drawdown.
SR represents the Sharpe ratio.
performance of Distributional DDPG. As shown in Fig. 12, we can see
that these three approaches outperform the market value. Hierarchical
DDPG provides the highest accumulated return and the lowest maxi-
mum drawdown compared to classical DDPG and Distributional DDPG.
Specifically, the maximum drawdown drops from 13.59% to 10.05%,
and the accumulated return rises from 10.5% to 15.07%. It illustrates
that Hierarchical DDPG is an effective approach to avoid a huge loss
caused by the financial crisis. Obviously, Distributional DDPG has a
lower maximum drawdown and a higher accumulated return compared
to the classical DDPG method. On the other hand, Fig. 13 shows the
portfolio risk of our approaches. In this paper, we apply parametric
CVaR as a risk measure for evaluating portfolio risk. It shows that
the portfolio risk of Hierarchical DDPG keeps lower than the CVaR
constraint, and Distributional DDPG has a lower portfolio risk than
classical DDPG.

In summary, the results demonstrate that Hierarchical DDPG and
Distributional DDPG perform better than the classical DDPG algorithm
14
for the rare occurrences of catastrophic events, and they provide the
capability to protect the investor who may suffer a massive loss in
the recession market. Furthermore, Hierarchical DDPG appears to be
a better approach to balance the portfolio risk and portfolio profit
compared to Distributional DDPG, which provides a higher return and
a lower portfolio risk or maximum drawdown.

6.3.4. Model validation with additional dataset
In this subsection, we validate our approaches by applying four

different stocks from the U.S. stock market, that is, ‘‘AMZN’’, ‘‘CCL’’,
‘‘CVX’’, and ‘‘LUV’’. AMZN represents Amazon.com Inc, one of the
world’s largest e-commerce companies headquartered in Seattle, which
focuses on cloud computing, digital streaming, and artificial intelli-
gence. CCL stands for Carnival Corporation, the world’s leading leisure
travel company that offers extraordinary vacations to travelers around
the world. CVX stands for Chevron Corporation, one of the world’s
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Fig. 12. The performance comparison of Hierarchical DDPG, Distributional DDPG, and classical DDPG under window size of ten-day. Among them, Hierarchical DDPG represents
the case of CVaR constraint 𝐶 = 5%, Distributional DDPG represents the case of risk parameter 𝛼 = 30%.
Fig. 13. The portfolio risk comparison of Hierarchical DDPG, Distributional DDPG, and classical DDPG under window size of ten-day. Among them, Hierarchical DDPG represents
the case of CVaR constraint 𝐶 = 5%, Distributional DDPG represents the case of risk parameter 𝛼 = 30%.
largest energy companies, which operates in integrated energy, chemi-
cals, and petroleum operations in more than 180 countries worldwide.
LUV typically refers to as Southwest Airlines Co., the world’s largest
low-cost airline offering cheaper air transportation in the United States.
The data is collected from Yahoo Finance, and consists of daily prices
and volumes from 2010-01-01 to 2020-07-30, the same as the period
of the ETF indexes. Then, the data is split into training and testing sets
15
in the ratio of 8:2. The data preprocessing is implemented similarly as
in Section 6.1.

As shown in Table 4, we obtain that the maximum drawdown of
Distributional DDPG has significantly decreased for different window
sizes compared to classical DDPG. Also, we observe that the accumu-
lated return and Sharpe ratio of Distributional DDPG tend to increase
as 𝛼 increases in most circumstances. This is not always the case
though. That is because when 𝛼 is small, the Distributional DDPG
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Table 4
Experimental results for additional dataset.

Window size DDPG Distributional DDPG Hierarchical DDPG

AR MDD SR 𝛼 AR MDD SR 𝐶 AR MDD SR

5 7.15% 13.99% 26.44% 5% 0.00% 0.00% 0.00% 5% 12.99% 9.05% 41.39%
15% 1.26% 7.81% 5.15% 8% 19.13% 9.05% 54.63%
30% 6.19% 11.60% 24.86% 13% 21.88% 8.83% 59.45%
50% 8.69% 12.97% 29.35%

10 15.29% 15.73% 39.37% 5% 0.00% 0.00% 0.00% 5% 30.71% 8.26% 76.01%
15% 1.19% 1.12% 25.05% 8% 12.13% 11.97% 38.44%
30% 9.46% 13.62% 30.44% 13% 28.16% 14.16% 63.48%
50% 27.18% 14.25% 56.97%

20 16.90% 19.41% 30.17% 5% 0.00% 0.00% 0.00% 5% 27.27% 12.83% 66.68%
15% 1.83% 8.66% 9.83% 8% 14.64% 12.97% 40.87%
30% 21.85% 14.14% 49.62% 13% 20.11% 14.46% 48.82%
50% 16.18% 16.34% 41.12%

25 22.38% 16.34% 36.32% 5% 1.44% 0.41% 53.94% 5% 4.12% 10.69% 20.79%
15% 5.61% 13.25% 23.58% 8% 35.33% 14.52% 66.98%
30% 27.35% 14.16% 60.19% 13% 14.35% 16.13% 38.42%
50% 37.53% 14.94% 63.38%

AR represents the accumulated return.
MDD represents the maximum drawdown.
SR represents the Sharpe ratio.
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agent examines the worst-case scenarios and constructs an extremely
conservative trading strategy, but as 𝛼 increases, the agent takes on
more risk to gain profit and, as a result, could suffer a larger loss in
the market crash compared to the small value of 𝛼. Table 4 illustrates
hat Hierarchical DDPG outperforms classical DDPG in perspective of
he maximum drawdown. Also, the Hierarchical DDPG algorithm can
chieve a higher accumulated return and Sharpe ratio in many cases.
or example, when the window size is 20 or 25, we can observe that
he maximum drawdown of Hierarchical DDPG for both cases has
ignificantly decreased, and the Sharpe ratio has increased in most
ases in comparison with the classical DDPG method. We note that
t is crucial to choose the appropriate window size and risk tolerance
arameters for the superior performance of Hierarchical DDPG.

. Conclusion

Portfolio management has always been a crucial topic in the fi-
ancial field, which allocates investment funds in a group of assets
o gain the maximum return of investors. It is a challenging task to
onstruct a trading policy in the financial market because it requires
rofessional knowledge in several fields, such as quantitative finance
nd risk management. The Deep RL algorithms can provide a more
ffective way to construct trading policies. Although Deep RL has
chieved remarkable performance in portfolio management problems,
ost of the existing methods have not considered the worst-case scenar-

os in constructing trading policy. In this paper, we propose two novel
pproaches, Hierarchical DDPG and Distributional DDPG to address this
ssue.

Hierarchical DDPG was developed based on DDPG and enhanced
ith a risk indicator CVaR. Hierarchical DDPG enables alternative

rading strategies depending on the level of risk tolerance, and also
ts performance is determined by the risk indicator’s ability to detect
ossible risk in a timely manner. In general, Hierarchical DDPG can
eliver better results for portfolios with a greater risk tolerance, while
ower levels of risk tolerance may lead to higher transaction costs.
n the other hand, Distributional DDPG was modeled based on the
aussian distribution, which only takes into account the bottom 𝛼-
ercentile distribution. Under the worst-case scenarios, Distributional
DPG will provide more steady and cautious trading strategies for

isk-averse investors.
To validate the applicability of the proposed learning analytics

ethods, a back-test is carried out on the real-world stocks from the
.S. financial market. Our study illustrates the superior performance
16
f Hierarchical DDPG. It is impressive that the Hierarchical DDPG
gent can not only maximize the portfolio profit but also keep the
ortfolio risk below a certain level of risk, which produces a portfolio
ith higher return and lower risk. Also, the experiment results reveal

hat Distributional DDPG produces risk-sensitive policies to reduce the
ffects of disaster events depending on the risk parameter. When the
isk parameter 𝛼 is small, the agent optimizes the performance for the
orst-case scenario, which provides a conservative trading strategy.

n contrast, when the risk parameter 𝛼 is large, the agent is more
willing to select an aggressive trading strategy. We can conclude that
our Hierarchical DDPG and Distributional DDPG models outperform
the classical DDPG method in the sense that they provide risk-sensitive
strategies that protect investors who may suffer a huge loss caused
by rare disaster events. Our proposed approaches provide effective
methods to learn a risk-sensitive solution for the portfolio optimization
problem.

The limitation of this work is that the Distributional DDPG method
is developed based on the assumption of the returns distribution that
leads to a closed-form of calculation for the objective function. In
addition, it is important to select the appropriate window size and
risk tolerance parameters as needed for superior performance of the
proposed models. For future research, we may involve textual data such
as news or tweets, to improve the performance of DDPG, Hierarchical
DDPG, and Distributional DDPG.
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Fig. 14. The portfolio values of classical DDPG with different window sizes during the training period.
Fig. 15. The portfolio values of classical DDPG with different window sizes during the testing period.
Appendix A. Convergence property of our distributional DDPG
model

Let us make use of the probability space (𝛺, , 𝑃 ) and view value
distributions as random vectors with finite moments in R× as usual
in the distributional RL model. Consider the process 𝑍𝑘+1 ∶=  𝜇𝑍𝑘
starting with some 𝑍0. The distributional Bellman operator 𝑇 𝜇 is a
contraction mapping whose unique fixed point is the random return 𝑍𝜇

using the 2-Wasserstein distance. Then, the sequence {𝑍𝑘} converges to
𝑍𝜇 in distribution. However, this does not necessarily mean pointwise
convergence of the sequence {𝑍𝑘} to 𝑍𝜇 . Bellemare et al. (2017)
mention that all moments also converge, in particular E[𝑍𝑘] converges,
but one cannot directly use the Wasserstein metric to get the variance
convergence.
17
Let 𝑘 and 𝑘 be the mean and variance of 𝑍𝑘. Then we have
the following convergence results for the proposed distributional DDPG
model.

Lemma A.1. For the sequences of mean and variance of 𝑍𝑘, the following
inequalities hold for 𝑘 = 1, 2,…

‖𝑘+1 −𝑘‖∞ ≤ 𝛾‖𝑘 −𝑘−1‖∞,

‖𝑘+1 − 𝑘‖∞ ≤ 𝛾2‖𝑘 − 𝑘−1‖∞,

where 𝛾 is the discount factor.

Proof. Since 𝑘+1 = E[𝑍𝑘+1] = E[ 𝜇𝑍𝑘], we have

‖ − ‖ = ‖E[ 𝜇𝑍 ] − E[ 𝜇𝑍 ]‖
𝑘+1 𝑘 ∞ 𝑘 𝑘−1 ∞
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Fig. 16. The price movements of each stock and portfolio values of Hierarchical DDPG with window size of ten-day and CVaR constraint 𝐶 = 5%.
= sup
𝑠,𝑎

𝛾|E[𝑃 𝜇𝑍𝑘(𝑠, 𝑎)] − E[𝑃 𝜇𝑍𝑘−1(𝑠, 𝑎)]|

= sup
𝑠,𝑎

𝛾|E[𝑍𝑘(𝑠′, 𝑎′)] − E[𝑍𝑘−1(𝑠′, 𝑎′)]| (𝑠′ ∼ 𝑝(⋅|𝑠, 𝑎), 𝑎′ ∼ 𝜇(⋅|𝑠))

≤ sup
𝑠′ ,𝑎′

𝛾|E[𝑍𝑘(𝑠′, 𝑎′)] − E[𝑍𝑘−1(𝑠′, 𝑎′)]|

= 𝛾‖E[𝑍𝑘] − E[𝑍𝑘−1]‖∞ = 𝛾‖𝑘 −𝑘−1‖∞.

Also, since 𝑟(𝑠, 𝑎) and 𝑃 𝜇𝑍𝑘(𝑠, 𝑎) are independent, we get

‖𝑘+1 − 𝑘‖∞ = ‖Var( 𝜇𝑍𝑘) − Var( 𝜇𝑍𝑘−1)‖∞
= sup

𝑠,𝑎
𝛾2|Var(𝑃 𝜇𝑍𝑘(𝑠, 𝑎)) − Var(𝑃 𝜇𝑍𝑘−1(𝑠, 𝑎))|

≤ sup
𝑠′ ,𝑎′

𝛾2|Var(𝑍𝑘(𝑠′, 𝑎′)) − Var(𝑍𝑘−1(𝑠′, 𝑎′))|

= 𝛾2‖Var(𝑍𝑘) − Var(𝑍𝑘−1)‖∞ = 𝛾2‖𝑘 − 𝑘−1‖∞. □

Lemma A.2. With the discount factor 𝛾 < 1, {𝑘} and {𝑘} are Cauchy
sequences in 𝐿∞.

Proof. We need to show that for every positive 𝜖 > 0, there is a positive
integer 𝑁 such that for every 𝑚, 𝑛 > 𝑁 , ‖𝑚 − 𝑛‖∞ < 𝜖. Without loss
of generality, we assume ‖1 − 0‖∞ ≤ 1.

By Lemma A.1, we have

‖2 − 1‖∞ ≤ 𝛾2, ‖3 − 2‖∞ ≤ 𝛾4, … , ‖𝑘+1 − 𝑘‖∞ ≤ 𝛾2𝑘.

Also, for 𝑚 > 𝑛,

‖𝑚 − 𝑛‖∞ ≤ ‖𝑚 − 𝑚−1‖∞ +⋯ + ‖𝑛+1 − 𝑛‖∞

≤ 𝛾2(𝑚−1) +⋯ + 𝛾2𝑛 =
(1 − 𝛾2(𝑚−𝑛))

1 − 𝛾2
𝛾2𝑛

≤ ( 1
1 − 𝛾2

)𝛾2𝑛.

Therefore, we can find a large 𝑁 such that 𝛾2𝑁 < 𝜖(1 − 𝛾2) for every
given 𝜖 > 0. The result for sequence {𝑘} can be obtained by following
essentially the same steps. The proof is completed. □

Theorem A.3. The sequences of {𝑘} and {𝑘} converge pointwise to their
limits in the critic network for policy evaluation.
18
Table 5
Hyperparameters of our proposed model.

Parameter DDPG Distributional DDPG Hierarchical DDPG

Batch size 64 32 64
Steps 128 128 128
Episode 3000 5000 5000
Trading period 1 day 1 day 1 day
Learning rate of actor 10−5 10−5 10−5

Learning rate of critic 10−4 10−4 10−4

Regularization rate 0.001 0.001 0.001
Discount rate 0.99 0.99 0.99
Memory size 106 106 106

Number of layer of actor 5 4 5
Number of layer of critic 4 5 4
Activation function of actor Relu Relu Relu
Activation function of critic Relu Relu, Softplus Relu
Training set portion 0.8 0.8 0.8
Test set portion 0.2 0.2 0.2
Commission rate 0.25% 0.25% 0.25%

Proof. By combining the fact that every Cauchy sequence converges
in 𝐿∞ to the limit and Lemma A.2, we conclude that the limits of
{𝑘} and {𝑘} exist and the sequences converge in 𝐿∞. This implies
that the convergence takes place for all sample transitions by repeated
applications of the distributional Bellman operator  𝜇 . □

Appendix B. Experimental results and parameters settings

See Figs. 14–16 and Table 5.
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