
Finance Stoch (2006) 10:331–340
DOI 10.1007/s00780-006-0014-4

Consistency among trading desks

David Heath · Hyejin Ku

Received: 21 November 2005 / Accepted: 25 March 2006 /
Published online: 3 August 2006
© Springer-Verlag 2006

Abstract We consider a bank having several trading desks, each of which
trades a different class of contingent claims with each desk using a different
model. We assume that the models are arbitrage-free. A practical question is
whether a bank using several models can be arbitraged. Surprisingly it can hap-
pen that in some cases there must be an arbitrage. We discuss conditions under
which the bank trades without offering arbitrage.
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1 Introduction

We consider a bank having several trading desks. Suppose that each desk uses
its own arbitrage-free model and trades a different class of contingent claims.
Can we ensure that the bank won’t offer arbitrage to its counterparties? If the
bank were willing to trade all securities and the models are “inconsistent”, then
there would be arbitrage opportunities. This is implied by the fact that there is
no common pricing measure. This paper gives conditions under which the bank
can be sure it does not permit arbitrage.

Some banks use the Libor market model for Libor derivatives (e.g. caps,
futures etc.) and the swap market model for swap derivatives. The banks report
that there seems no decent single model to explain both caps and swaption
prices. This motivates the questions of whether there is “inconsistency” between
the prices and whether the banks using both Libor and swap market models
would possibly offer arbitrage.

Brigo and Mercurio [3] also discussed in their book that the Libor market
model for pricing caps and the swap market model for pricing swaptions are
“distributionally” incompatible. That is, while the forward swap rates under the
swap market model are lognormally distributed, they are not lognormal under
the Libor market model.

One may argue that the difference between the forward swap rates (or for-
ward Libor rates) under the two models is not large, and this is not a problem in
practice because of transaction costs or market illiquidity. However the question
still remains and the possibility of arbitrage should be investigated. Although
there were various works on the arbitrage-free property and the existence of
a martingale measure since [6], the question of whether banks using differ-
ent models can be arbitraged has not been carefully studied. Since different
products motivate different models, the question we address in this paper is
important for both theoretical and practical interests.

In this paper, each trading desk uses its own model and trades a linear sub-
space of claims. On a probability space (�, F , P), we define strong arbitrage as a
claim (random variable) X which satisfies X ≥ 0 (i.e., has a nonnegative payoff
a.s.), but has a negative market price ψ(X) < 0. We call a model with a pricing
operator weakly arbitrage-free if there is no strong arbitrage. By a martingale
measure (for a given pricing operator) we mean a countably additive probabil-
ity measure which represents the pricing operator and is absolutely continuous
with respect to P. We call a model with a pricing operator arbitrage-free if there
exists a martingale measure.

We consider pricing operators ψ which are linear and map X’s to their mar-
ket prices. Ruling out trivial arbitrage permits the representation of prices by a
finitely additive measure (see Theorem 3.1), and an example shows that there
need not be a countably additive measure. Adding a continuity condition pro-
vides the existence of a (possibly signed) countably additive representing mea-
sure (see Theorem 4.2), but sometimes the only countably additive representing
measure is a signed measure. Finally, the consistency condition guarantees the
existence of a positive countably additive pricing measure.
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This paper is organized as follows. In Sect. 2 we provide a brief explanation of
Libor and swap market models. In Sect. 3, we provide a simple condition under
which there is no strong arbitrage and there exists a finitely additive represent-
ing measure. We then show, by example, that there is “inconsistency” between
Libor and swap market models when the bank is willing to trade certain types of
products from both models. This is implied by the fact that there is no countably
additive measure which represents both prices. In Sect. 4 and 5, we give neces-
sary and sufficient conditions for the existence of a countably additive (signed
or positive) measure which represents both initial pricing operators (and hence
their natural extension).

2 Libor and swap market models

In this section, we present the Libor and swap market models and discuss the
problem arising from a bank’s use of different interest rate models. For the
literature on the market models in detail, we refer to [7], [2], or [8].

The caps and swaptions markets are the main interest rate derivative markets.
The Libor market model is popular in the caps market (for Libor derivatives),
and the swap market model is popular in the swaptions market (for swap deriv-
atives). It is known that each model is arbitrage-free. When a bank uses both
models, can it be sure that there is no arbitrage opportunity?

2.1 Description of the market models

Let {T1, T2, . . . , Tn} be a set of times; we assume that all times are equally spaced
by δ, i.e., Tk = T1 + (k − 1)δ, k = 1, 2, . . . , n. Let P(t, Tk) be the price at time t
of a Tk-maturity bond. Let F(t, Tk−1, Tk) be the forward Libor defined by

F(t, Tk−1, Tk) = 1
δ

(
P(t, Tk−1)

P(t, Tk)
− 1

)
,

which equals the Libor L(Tk−1, Tk) at time Tk−1.
For the Libor market model, the bond price P(t, Tk) is used as a numeraire

and the probability measure QTk associated with the numeraire P(t, Tk) is called
the forward measure. Then, the forward Libor is a martingale and is assumed
to be lognormally distributed under QTk .

Consider a T2-maturity caplet resetting at time T1 with a fixed rate k; the
caplet pays the difference between the Libor L(T1, T2) observed at time T1 and
the rate k. The payoff at time T2 is

δ
(
L(T1, T2)− k

)+.

It is well known that the price at time 0 of the caplet is given by
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EQ

[
e− ∫ T2

0 rsdsδ
(
L(T1, T2)− k

)+]

under the risk-neutral measure Q. If we use the T2-maturity bond as a num-
eraire, then the forward measure (the martingale measure for this numeraire)
QT2 has Radon–Nikodym derivative

dQT2

dQ
= e− ∫ T2

0 rsds

P(0, T2)

(see, for instance [1, p. 191]). Therefore the price of the caplet is given by

P(0, T2)EQT2

[
δ
(
L(T1, T2)− k

)+]
.

Now suppose an interest rate swap starts at time T1, the floating rate is reset
equal to the Libor at times T1, T2, . . . , Tn−1 and the payment times (of paying a
fixed rate k and receiving the floating rates) are T2, . . . , Tn. Consider an option
to enter into the swap at time T1. Then at time T1, the swaption is worth

(
n∑

k=2

P(T1, Tk)δ
(
L(Tk−1, Tk)− k

))+
. (2.1)

The forward swap rate is the value of the fixed rate which makes the initial swap
value equal to zero. Then the forward swap rate is

S(t) = P(t, T1)− P(t, Tn)∑n
k=2 δP(t, Tk)

. (2.2)

For the swap market model, NS(t) := ∑n
k=2 δP(t, Tk) is used as a numeraire,

and the probability measure QS associated with the numeraire NS is called the
forward swap measure. Then, the forward swap rate S(t) is a martingale and is
assumed to have a lognormal distribution under the measure QS. By a change
of numeraire as before, the swaption price at time 0 is determined by

NS(0)EQS
[(

S(T1)− k
)+]

.

As illustrated, the above two market models use different numeraires and
different pricing measures. Furthermore, computations are based on lognormal-
ity of the forward Libor rates and forward swap rates assumed by each model.
That is, each of the pricing operators of two models is represented by a martin-
gale measure, QTk and QS respectively. We are concerned with the question of
whether there is a martingale measure which represents both prices.

Remark 2.1 We remark that the reader, who worries about the boundedness of
the payoffs, may consider floors and swaps (receiving fixed) instead.
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2.2 Is it arbitrage-free?

Let us first consider a swaption whose underlying swap has one period, which
is reset at time T1 and pays at time T2 (= T1 + δ). The payoff at time T1 the
swaption is [see (2.1)]

P(T1, T2)δ
(
L(T1, T2)− k

)+

with a rate k.
On the other hand, consider a caplet paying the difference between the Li-

bor L(T1, T2) and the rate k at time T2. The value at time T1 of the caplet is
P(T1, T2)δ

(
L(T1, T2) − k

)+. Therefore a swaption for single period swap can
be viewed as a claim traded in both caps and swaptions markets. To price this
derivative, the forward swap measure QS and the forward measure QT2 will be
used in each market, respectively.

In this case, the forward swap rate is given by [see (2.2)]

P(t, T1)− P(t, T2)

δP(t, T2)
= 1
δ

(
P(t, T1)

P(t, T2)
− 1

)

which is equivalent to the forward Libor F(t, T1, T2). Also the pricing measure
QS for the swap market model coincides with the measure QT2 for the Libor
market model. Two models thus give the same prices for claims traded simul-
taneously in both markets. Therefore there seems no trivial “cross market”
arbitrage.

3 Simple condition for no strong arbitrage

On a probability space (�, F , P) with a reference probability measure P, let L1
and L2 be the set of contingent claims traded by each desk. We consider L1
and L2 as linear subspaces of L∞(�, F , P), the space of all equivalence classes
of bounded real-valued functions defined on �. We assume we can choose a
numeraire so that one of the two desks trades the claim X = 1 at market price
ψ(X) = 1. Without loss of generality, assume that L1 contains the constant
claim 1.

Let ψ1 and ψ2 be pricing operators of L1 and L2, respectively (i.e.,
ψi : Li → R for i = 1, 2). Suppose ψ1 and ψ2 are linear and satisfy the property
for no strong arbitrage: If X1 ∈ L1 and X1 ≤ b, then ψ1(X1) ≤ b for any
constant b ∈ R, and if X2 ∈ L2 and X2 ≤ 0, then ψ2(X2) ≤ 0.

A trader who could trade with both desks can construct any element of
L1 + L2. Thus we are concerned with the question of extending ψ1 and ψ2,
defined on L1 and L2, to ψ on L1 + L2. To avoid trivial arbitrage, we assume
that if the value of X1 is always less than or equal to that of X2, then the price
for X1 is less than or equal to the price for X2. We note that this assumption
ensures that the value ofψ1 is equal to that ofψ2 on L1 ∩L2. In words, the prices
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should be the same for contingent claims which are simultaneously traded by
both desks.

Under this simple condition, we can show there is a unique extension
ψ of ψ1 and ψ2. Moreover the Hahn–Banach theorem guarantees that there is
a finitely additive probability measure µ in the dual space of L∞(�, F , P) such
that ψ(X) = Eµ[X].
Theorem 3.1 Suppose that

ψ1(X1) ≤ ψ2(X2) for all X1 ≤ X2 a.s. (3.1)

where X1 ∈ L1 and X2 ∈ L2. Then there exists a unique linear mapψ : L1+L2 →R

such thatψ |Li = ψi for i = 1, 2 andψ satisfies the property for no strong arbitrage:
If X ∈ L1 + L2 and X ≤ b, then ψ(X) ≤ b for any constant b ∈ R.

Moreover, there exists a finitely additive probability measure µ which is abso-
lutely continuous with respect to P, that is, P(A) = 0 impliesµ(A) = 0 for A ∈ F ,
and

ψ(X) = Eµ[X] for all X ∈ L1 + L2.

Proof Define the linear map ψ on L1 + L2 such that ψ(X) = ψ1(X1)+ψ2(X2)

where X = X1 + X2 for X1 ∈ L1 and X2 ∈ L2. Since ψ1 and ψ2 are lin-
ear and ψ1 = ψ2 on L1 ∩ L2, this ψ is a well-defined linear map. Also, since
ψ1(X1) ≤ ψ2(X2) for X1 ≤ X2, it follows that if X ∈ L1 + L2 and X ≤ b, then
ψ(X) ≤ b.

Using the Hahn-Banach theorem (see, for example, [9, p. 47]), there is a
linear functional � defined on L∞(�, F , P) such that �(X) = ψ(X) for all
X ∈ L1 + L2. We note that the dual space of L∞(�, F , P) is the space of finitely
additive measures on (�, F , P), and the property for no strong arbitrage of ψ
implies that � is a positive linear map on L∞(�, F , P). Hence, there exists a
finitely additive measure µ on (�, F , P) for which

ψ(X) = Eµ[X]

for all X ∈ L1 + L2. ��
Remark 3.1 We remark that the property for no strong arbitrage (i.e., if X ≤ b,
then ψ(X) ≤ b for any b ∈ R) also implies |ψ(X)| ≤ ||X||∞.

We now consider the existence of a martingale measure for the prices of
two market models. For this purpose, we rather use the following concep-
tual example. Let � be the (countably infinite) set of all possible outcomes
� = {ω1,ω2,ω3, . . .}. Let L1 denote the set of claims traded in a forward
Libor market, which have a constant payoff except for finitely many ω2k+1’s
(k = 0, 1, 2, . . . ). Let L2 denote the set of claims traded in a forward swap mar-
ket, which have a constant payoff except for finitely manyω2k’s (k = 0, 1, 2, . . . ).
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Assume that the price of a contingent claim X is determined in each market by
the constant value that X takes on infinitely often.

Then, the combined set L = L1 + L2 (of claims available to a trader who
can trade both types) is the set of contingent claims whose payoffs are constant
for all but finitely many ωn’s, and the price of each such claim is equal to that
constant. Clearly each of two pricing operators ψ1 and ψ2 is represented by a
countably additive measure (for example, a measure giving mass 1 to the set
{ω2} represents ψ1).

However, a pricing operator ψ of L, the unique extension of ψ1 and ψ2,
cannot be represented by a countably additive measure. In fact, we have that
ψ(1{ωn}) = 0 for every ωn where 1{ωn} is the indicator random variable of the set
{ωn}, because ψ(1{ωn}) = ψ1(1{ωn}) = 0 if n is odd, and ψ(1{ωn}) = ψ2(1{ωn}) = 0
otherwise. Suppose Q represents ψ , i.e., ψ(X) = EQ[X]. If Q were countably
additive, we would have Q = 0 since any countably additive measure assigning
mass 0 to each set {ωn} must be the zero measure.

As the example shows, it can happen that there is no countably additive
measure which represents the pricing operators of two market models. From
this observation, we conclude that even though there seems no strong arbitrage
between Libor and swap market models, the bank offers an arbitrage if the
bank (using two models) is willing to trade all types of securities.

We note that the above example adapts an idea of David Gilat discussed
in [5].

4 Existence of a countably additive representing measure

As discussed in Sect. 3, the condition (3.1) given in Theorem 3.1 for no strong
arbitrage is not sufficient for the existence of a countably additive measure
which represents the pricing operator. In this section, we add a continuity con-
dition in order to obtain a countably additive representing measure.

We consider the duality (L∞, L1) with the bilinear form 〈X, f 〉 = EP[Xf ].
Let T be the relative topology on L1 + L2 induced by σ(L∞, L1).

Definition 4.1 Let ψ , defined on L1 + L2, be a linear extension of ψ1 and ψ2.
ψ is called suitably continuous if limψ(Xα) = 0 for each net {Xα} in L1 + L2
which converges to 0 for the T -topology.

Now we show that if ψ is suitably continuous, there exists a countably addi-
tive measure which represents the pricing operator. In fact, this condition is
necessary and sufficient for the existence of a countably additive representing
measure.

Theorem 4.2 Suppose thatψ1(X1) ≤ ψ2(X2) for all X1 ≤ X2 a.s. where X1 ∈ L1
and X2 ∈ L2. Then the unique linear mapψ : L1+L2 → R, which is an extension
of ψ1 and ψ2, is suitably continuous if and only if there is a countably additive
(not necessarily positive) measure Q which is absolutely continuous with respect
to P and satisfies
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ψ(X) = EQ[X]

for all X ∈ L1 + L2.

Proof Suppose that ψ satisfies the continuity condition. Consider the set

M = {X ∈ L1 + L2 | ψ(X) = 0}

and choose X0 ∈ L1 + L2 such that ψ(X0) = 1.
We first show that X0 is not in M for the σ(L∞, L1)-topology. To that end,

suppose that X0 is in the σ(L∞, L1)-closure of M. Then there exists a net {Xα}
in M converging to X0 in the σ(L∞, L1)-topology, see [4]. Since X0 and all
Xα are in L1 + L2 and T is the induced topology on L1 + L2, {Xα} converges
to X0 in the T -topology. But limψ(Xα) is not equal to 1; this contradicts the
hypothesis that ψ is suitably continuous. Thus M is σ(L∞, L1)-closed, and does
not intersect {X0}.

Now by the Hahn–Banach separation theorem, there exists a continuous
linear functional �, of the form �(X) = 〈X, f 〉 for all X ∈ L∞ and some
f ∈ L1, which separates M and {X0}, that is,�(X0) and�(M) are disjoint. Since
�(M) is a linear subspace of R, �(M) = {0} and �(X0) = 1 (after dividing �
by �(X0), if necessary).

For X ∈ L1 + L2, we have X − ψ(X)X0 ∈ M since ψ(X0) = 1. Then

�(X)− ψ(X) = �(X)− ψ(X)�(X0) = �
(
X − ψ(X)X0

) = 0.

Thus � is an extension of ψ and ψ is represented as

ψ(X) = EP[Xf ] = EQ[X]

where Q is a countably additive (signed) measure absolutely continuous with
respect to P.

Conversely, suppose thatψ is represented byψ(X) = EQ[X] for a countably
additive measure Q which is absolutely continuous with respect to P. Clearly
the linear map ψ is continuous for the σ(L∞, L1)-topology, so ψ(Xα) tends to
0 for any net {Xα} where Xα converges to 0. ��

We now give an example which shows that sometimes the only countably
additive representing measure must be a signed measure. For this example, we
consider an extension of the one presented in Sect. 3.

Let �′ = � ∪ {ω0} and extend each random variable in Li (i = 1, 2) in the
following way. For each X in Li (i = 1, 2), define a random variable Y on �′
by Y(ωn) = X(ωn) for every ωn ∈ � and Y(ω0) = −ψ(X), where ψ(X) is the
constant associated with X (as defined in the previous example). Assume that
the values of ψi (i = 1, 2) are given as before; the price of a claim is determined
in each market by the constant value that the claim takes on infinitely often.

Suppose Q representsψ . The same argument shows that any countably addi-
tive measure must assign mass 0 to the set {ω1,ω2,ω3, . . .} and hence must assign
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−1 to the set {ω0}. Therefore if Q were countably additive, Q would be a signed
measure.

5 Existence of a martingale measure

A countably additive representing measure is obtained provided the continuity
condition given in Definition 4.1 holds. However, this measure is not necessarily
a positive measure as required for a pricing measure. By a martingale measure
(for the pricing operator) we mean a countably additive probability measure
which represents a given pricing operator and is absolutely continuous with
respect to P. In this section we give the consistency condition which (finally)
ensures the existence of a martingale measure.

Suppose that each market is arbitrage-free and has a martingale measure.
Let Q1 and Q2 be countably additive probability measures representing ψ1 and
ψ2 respectively, i.e., ψ1(X1) = EQ1[X1] and ψ2(X2) = EQ2 [X2] for all X1 ∈ L1
and X2 ∈ L2.

Definition 5.1 Let ψ , defined on L1 + L2, be a linear extension of ψi on Li
(i = 1, 2). ψ is said to satisfy the consistency condition provided there is a con-
stant K > 0 such that if EQ1[X] < 1 and EQ2 [X] < 1, then ψ(X) < K for
all X ∈ L1 + L2, where Qi are probability measures representing ψi (i = 1, 2)
respectively.

Theorem 5.2 Suppose thatψ1(X1) ≤ ψ2(X2) for all X1 ≤ X2 a.s. where X1 ∈ L1
and X2 ∈ L2. Then the unique linear map ψ : L1 + L2 → R, which is an exten-
sion of ψ1 and ψ2, satisfies the consistency condition if and only if there exists a
martingale measure Q for ψ .

Proof Suppose that ψ is represented on L1 + L2 as ψ(X) = EQ[X] for a
countably additive probability measure Q which is absolutely continuous with
respect to P. If we take Q1 = Q2 = Q, then the consistency condition follows
with K = 1.

Conversely, let Q1 and Q2 be countably additive probability measures rep-
resenting ψ1 and ψ2. Assume ψ satisfies the consistency condition for Q1 and
Q2. Set

U = {
Y ∈ L∞ | EQ1 [Y] < 1, EQ2 [Y] < 1

}
.

Then U is a convex 0-neighborhood in L∞ for the σ
(
L∞(P), L1(P)

)
-topology.

If X is in (L1 + L2)∩ (U − C), where C = {
Y | Y ≥ 0

}
is a positive cone in L∞,

then X ≤ Y for some Y in U, which means that EQ1 [X] < 1 and EQ2[X] < 1.
Therefore, the consistency condition implies that there exists a constant K > 0
such that ψ(X) < K for all X ∈ (L1 + L2) ∩ (U − C).

Then, the set
{
X ∈ L1 + L2

∣∣ψ(X) = K
}

is a linear manifold in L∞ (i.e.,
a translate of a subspace of L∞) not intersecting the open convex set U − C.
By the separation theorem, there exists a closed hyperplane H, which can be
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assumed to be of the form H = {
Y ∈ L∞∣∣�(Y) = K

}
, containing the linear

manifold and not intersecting U −C, where� is a σ(L∞, L1)-continuous linear
functional. Clearly, � is a continuous extension of ψ and

�(Y) = EP[Yf ]

for all Y ∈ L∞ and some f ∈ L1. Since 0 ∈ U − C, we obtain �(Y) < K for
Y ∈ U − C. Therefore, �(Y) < K for Y ∈ −C, so

Y ∈ C implies �(Y) ≥ 0.

Hence, we have f ≥ 0 and ψ can be represented as

ψ(X) = EQ[X]

for a countably additive probability measure Q which is absolutely continuous
with respect to P. ��
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