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In this paper, we derive new expectation representations of coherent multiperiod risk
measures. A special feature of our representation is that it requires the use of
randomized stopping times (introduced by Baxter and Chacon). Additionally, the
results provide some insight into multiperiod risk measurement.
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1. Introduction

This paper concerns questions related to multiperiod risk measures. Financial risk is

usually quantified by a certain functional called a risk measure. If one regards the future

value of a portfolio as a random variable X, a risk measure is a mapping from the set of

random variables representing future portfolio values to the real numbers.

In the landmark paper, Artzner et al. [2] set out a set of properties one would want a risk

measure to have and characterized the set of risk measures that possess these properties.

They called such risk measures coherent and showed every coherent risk measure is

represented by a set of probability measures called ‘generalized scenarios’. A random

variable representing future portfolio value is acceptable if its risk measure is non-positive.

Carr et al. [7] introduced valuation test measures and stress test measures instead of

scenarios, and floors associated with probability measures in order to determine whether or

not an opportunity is acceptable. Föllmer and Schied [11] further developed these ideas. In

these papers, a random variable is considered acceptable if its expected value under each

scenario measure is greater than or equal to a ‘floor’ associated with that measure (the

floors are set to be zero for coherent risk measures).

All these papers are concerned with a single period: the risk is measured at the

beginning of the period and the value of position (random loss or gain) is observed at the

end of the period. It is known that a coherent risk measure is described by a set of

probability distributions, in the sense that future value is acceptable if and only if every

expected value under probability measures in the set is non-negative.

The notion of acceptability of a random variable was modified to some extent. Föllmer

and Schied and Larsen et al. [12,16] considered the set of random variables from which it

is possible, by trading, to be acceptable at the terminal date. Ku [15] defined a portfolio to

be acceptable, provided there is a trading strategy (satisfying some limitations on market
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liquidity), which, at some fixed date in the future, provided a cash-only position, (possibly)

having positive future cash flows, which is acceptable as a random variable in the previous

sense. However, these papers only concern final values at the end of holding period to

decide its acceptability at the initial date.

Artzner et al. [3,4] turned their original static notion of coherent risk measures into a

dynamic concept. The authors discussed multiperiod risks and defined coherent

multiperiod risk measures on stochastic processes rather than random variables. As the

investment banks would not hold static positions, risk measures should be applied to

random processes, not random variables. This turns out to be quite technical and the papers

worked out the problems in discrete time. The papers considered the ‘risk-adjusted value’

which is the negative of risk measure of a portfolio process. The authors constructed the

risk-adjusted value to evolve over time satisfying Bellman’s principle, and discussed a

stability property of test probability measures. The authors also presented a representation

result which showed such risk-adjusted value is represented by one reference probability

measure on a state space and a set of positive increasing processes. In the last several

years, a number of papers on dynamic risk measures have appeared, for instance

[6,9,10,14,18]. This is an exciting new area of mathematical finance.

This paper concerns representations for coherent multiperiod risk measures. As

mentioned, any coherent risk measure for single period arises from a set of probability

measures onV, by computing the expected loss under each probabilitymeasure and taking the

worst value. The main contribution of the paper is to provide a new characterization of

multiperiod risk measure, so that one can build proper measures of risk for multiperiod.

Moreover, it gives some insight into multiperiod risk measurement. For multiperiod risks, a

coherent riskmeasure is characterized by the natural extensions of probability measures onV

and a set of randomized stopping times, in which the additional source of randomness is

involved in an interesting way. The representation theorem tells us that a portfolio process is

considered acceptable for multiperiod risks if and only if the values at (randomly chosen)

future times are acceptable as random variables. Also, by choosing a set of ‘scenarios’ onV

along with a mixed strategy for when to observe the value, we get a coherent risk measure.

After the randomized stopping time was introduced by Baxter and Chacon [5], it has

been studied by a number of authors. A randomized stopping time is a mixture of ordinary

stopping times, and very useful in solving certain optimization problems or in game theory

(see, for example [1] or [17]). Chalasani and Jha [8] used the randomized stopping time for

American option pricing with transaction costs. As ordinary stopping times are needed in

American option pricing, they represented the upper hedging price using randomized

stopping times in the presence of transaction costs.

This paper is organized as follows: Section 2 describes the model, including the axioms

of coherent risk measures. In Section 3, we construct a randomized stopping time and a

probability measure on V from a probability measure on a tree in the product space

V0 ¼ {0; 1; . . . ; T} £V. We also present a simple example. In Section 4, we apply the

results of Section 3 to obtain representation theorems for coherent multiperiod riskmeasures.

2. The model

Let V be the (finite) set of all possible events at date T. Let N t be the partition of V

consisting of the smallest events at date t ¼ 0; 1; . . . ; T . These events are represented by

nodes of a tree at date t as described in [3].

We note that the partition N tðt $ 1Þ is a refinement of the partition N t21: we use the

notation ðn; tÞ labelled by the date t for node n on a tree, where n represents all the
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descendants. Then for each node ðn; tÞ [ N t, there is a node ðm; t2 1Þ [ N t21 satisfying

n , m.

To denote all the nodes on the tree, we set N ¼ <0#t#TN t. Then, possible future

values of position X can be viewed as a function onN, i.e. an (adapted) process defined on

the product space V0 ¼ {0; 1; . . . ; T} £V, which is constant in each node of the tree. The

restriction Xt of X to the partition N t is also a function on V, and XtðnÞ represents the

‘value’ in the node n (if the event n occurs at date t).

In this paper, X is interpreted as possible future values of positions or portfolios currently

held in a financial market. We call these sequences during the holding period ‘value

processes’. We then consider measures of risk, which describe how much capital is required

for a current position to be ‘acceptable’. Let X denote the set of all functions on N.

Definition 2.1. A risk measure is a mapping from X into R.

For completeness of the paper, we state axioms for measures of risk to be coherently

presented in [2].

AXIOM S (subadditivity). For all X; Y [ X ,

rðX þ YÞ # rðXÞ þ rðYÞ:

AXIOM P (positive homogeneity). For all X [ X and all a $ 0,

rðaXÞ ¼ arðXÞ:

AXIOM T (translation invariance). For all X [ X and all real number a,

rðX þ aÞ ¼ rðXÞ2 a:

AXIOM M (monotonicity). For all X and Y [ X with X # Y ,

rðYÞ # rðXÞ:

Definition 2.2. A risk measure r is called coherent if it satisfies the above four axioms of

subadditivity, positive homogeneity, translation invariance and monotonicity.

If AXIOM S and AXIOM P are replaced by AXIOM C (convexity), for all X; Y [ X
and 0 # l # 1,

rðlX þ ð12 lÞYÞ # lrðXÞ þ ð12 lÞrðYÞ;

then a risk measure r is called convex as in [11]. (See, also [13] in which weakly coherent

risk measures are considered.)

3. Randomized stopping times

In this section, we discuss a randomized stopping time and its construction process from a

probability measure on N. Let ðV;F ;PÞ be a probability space with a filtration {F t}.

We extend the sample space to �V ¼ ½0; 1� £V and a s-field to �F ¼ Bð½0; 1�Þ £ F with

Borel s-algebra Bð½0; 1�Þ. We further define a filtration �F t ¼ Bð½0; 1�Þ £ F t and a

probability �P ¼ l £ P, where l is a Lebesgue measure. Any random variable on V will be

considered as one defined on extended sample space �V ¼ ½0; 1� £V in the obvious way.
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Definition 3.1. A map t : ½0; 1� £V! ½0;1� is called a randomized {F t}-stopping time

if t is an �F t-stopping time, i.e. {ðu;vÞ : tðu;vÞ # t} [ �F t for every t.

For more details in continuous-time case, we refer to [5]. We present the following

lemma,which can be obtainedwithout toomuch difficulty, for the purpose of Proposition 3.3.

Lemma 3.2. Let ð½0; 1�;Bð½0; 1�ÞÞ be the measurable space. Then for any N $ 1, there

exists an increasing family of sub s-fields of Bð½0; 1�Þ, i.e.

G0 , G1 , · · · , GN , Bð½0; 1�Þ

and independent random variables X0;X1; . . . ;XN which satisfy the following:

(1) Xi is Gi-measurable; ði ¼ 0; . . . ;NÞ.
(2) The distribution of Xi is uniform on ½0; 1�.

Proof. For fixed N, take independent uniform random variables X0;X1; . . . ;XN over [0,1].

(One can refer to random number generators for generating random variables.) Let Gi be

the s-algebra generated by Xkð0 # k # iÞ. A

Here, we let F t ¼
W

s#t N s and F ¼
W

t#T N t. Thus, F t is the s-field containing every set

of N s before or at time t, or the information available at time t. In other words, the sets in

N t are the atoms of F t.

Proposition 3.3. For a probability measure Q onN, there exists a pair ðP; tÞ consisting of
a probability measure onV and a randomized {F t}-stopping time such that for each value

process X

EQ½X� ¼ E �P½Xt�; ð3:1Þ

where Xt ¼
P

0#t#TXt1{t¼t}. Conversely, if P is a probability measure on V and t is a

randomized {F t}-stopping time, then there exists a probability measure Q onN satisfying

the above equation (3.1).

Proof. Suppose that a probability Q on N is given. Equation (3.1) is equivalent to that for

each node n,

QðnÞ ¼ ðl £ PÞ{ðu;vÞ : tðu;vÞ ¼ t;v [ n}: ð3:2Þ

We construct a probability measure P on V in the following way: first, define the

function Cðn; tÞ by

Cðn; tÞ ¼
X
n0[n

Qðn0Þ;

which is the sum of Q-probabilities of all descendants of node n. Define the conditional

probability P for each date tðt $ 1Þ

P{v : v [ njðm; t2 1Þ} ¼

Cðn;tÞ
Cðm;t21Þ2QðmÞ

if n , m

0 otherwise

8<
: ;

H. Ku226



and, we then define the conditional probability of n with respect to N t21 by

P{njN t21} ¼
X

ðm;t21Þ[N t21

P{v : v [ njðm; t2 1Þ}1{m}ðvÞ:

As the convention, P{ðn0; 0Þ} ¼ 1 at date 0. Then, there exists a unique probability

P on ðV;F Þ.

Let N be the number of all nodes on the tree to apply Lemma 3.2. Now, we take a

family of sub s-fields of Bð½0; 1�Þ and independent random variables at each node which

satisfy the properties as in Lemma 3.2: adopting the notation Xðn;tÞ for the random variable

equipped with subscript representing each node ðn; tÞ,

(1) Xðn;tÞ is Gt-measurable.

(2) The distribution of Xðn;tÞ is uniform on ½0; 1�,

where Gt is the smallest s-field generated by {Xðn;sÞ; s # t}. Define a process t (a function

on ½0; 1� £V) by

tð·;vÞ ¼ 0, Xðn0;0Þ # Qðn0Þ
� �

tð·;vÞ ¼ 1;v [ n, Xðn0;0Þ . Qðn0Þ
� �

and Xðn;1Þ #
QðnÞ
Cðn;1Þ

� �
..
.

tð·;vÞ ¼ t;v [ n, Xðm;sÞ .
QðmÞ
Cðm;sÞ for all n , m and s , t

� �
and Xðn;tÞ #

QðnÞ
Cðn;tÞ

� �
:

Note that ðl £ PÞ{tð·;vÞ # T} ¼ 1. We then observe that {tð·;vÞ # t} is Gt £ F t-

measurable for each date t, thus F tð¼ Bð½0; 1�Þ £ F t)-measurable. Therefore, t :

½0; 1� £V! {0; 1; . . . ; T} is a randomized {F t}-stopping time.

Finally, it can be checked that equation (3.2) holds for the probability P on V and a

randomized {F t}-stopping time t provided. For each node ðn; tÞ, there are nodes

ðm; t2 1Þ [ N t21, ðl; t2 2Þ [ N t22; . . . ; repeatedly such that n , m , l , · · · , n0.

Then, we have

ðl £ PÞ{tð·;vÞ ¼ t;v [ n} ¼
QðnÞ

Cðn; tÞ
P{v [ njðm; t2 1Þ}

12
QðmÞ

Cðm; t2 1Þ

� �
P{mjðl; t2 2Þ}· · · 12

Qðn0Þ

Cðn0; 0Þ

� �
P{v [ n0}:

The above equation becomes

QðnÞ

Cðn; tÞ

Cðn; tÞ

Cðm; t2 1Þ2 QðmÞ
12

QðmÞ

Cðm; t2 1Þ

� �
Cðm; t2 1Þ

Cðl; t2 2Þ2 QðlÞ
· · · 12

Qðn0Þ

Cðn0; 0Þ

� �
;

which equals Q(n).
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Conversely, suppose P is a probability measure on V and t is a randomized {F t}-

stopping time. We simply define the values of Q on N by the formula

QðnÞ ¼ ðl £ PÞ{ðu;vÞ : tðu;vÞ ¼ t;v [ n}:

Then, X
0#t#T

X
n[N t

QðnÞ ¼
X

0#t#T

ðl £ PÞ{tð·;vÞ ¼ t;v [ n} ¼ 1:

Therefore, Q is a probability measure on N. A

We provide an example to illustrate the construction of P and t in the simplest setting.

The tree in general does not of course have to be binomial.

Example 3.4. Let V ¼ {HH;HT ; TH; TT}. Suppose that a probability measure Q on a tree

is given to each node: (Figure 1).

Then, the conditional probabilities on each segment are defined as follows: (Figure 2).

The stopping probabilities at each node are also defined (Figure 3) as follows.

At time 0, it stops with probability 0.3. If it was not stopped at time 0 and got to nodeH at

time 1, then it would stop there with probability 0.1 divided by 0.25, i.e. in the proportion of

Q-weight to all future weights. (For the value process, if the process has not been observed at

time 0 and got to node H, the value process would be observed there with probability

(0.1/0.25.) Thus the stopping probability at nodeH is ð12 0:3Þð0:1=0:25Þ ¼ 0:28. Note that
the sum of stopping probabilities along any path is 1. Therefore, the randomized stopping

time t is defined on ½0; 1� £V. For instance, given v ¼ HH, tðu;vÞ takes the values of 0 for
0 # u # 0:3, 1 for 0:3 , u # 0:58 and 2 for 0:58 , u # 1, respectively.

By our construction of P and t, the (natural extension of) probability that true outcome

is HH and stops at time 2 will be

�P{tðu;HHÞ ¼ 2} ¼ ð12 0:3Þ
0:25

0:7
12

0:1

0:25

� �
0:1

0:15
¼ 0:1

¼ QðHH; 2Þ:

Figure 1. Probability Q on a tree.
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In the same way, �P{tðu;vÞ ¼ t} ¼ Qðv; tÞ for every v and t.

Remark 3.5. In Figure 3, the sum of the values along any path is 1. For an ordinary stopping

time, the value of 1 appears at only one node in each path and the value of 0 at all other

nodes. While ordinary stopping times specify exactly one time point to stop on each path,

randomized stopping times are generalizations to add the additional ‘randomness’ to

stopping times on the base sample space. In other words (for financial intuition), the value

process may be observed at any time, which is randomly chosen by the regulator.

4. Representation of a coherent multiperiod risk measure

In this section, we consider risk measures on value processes, the sequence of unknown

future values at intermediate dates of a portfolio process. In [3,4], the authors considered

the ‘risk-adjusted value’ which is the negative of risk measure of a portfolio process and

showed for a multiperiod risk measure that satisfies the four coherence axioms (given in

Section 2), the risk-adjusted value of each value process is given by a set of test

probabilities on product space V0 as follows:

For each coherent risk measure, there exists a family Q of probability measures Q on V0

such that for each value process X, its risk-adjusted value pðXÞ at date 0 is given by

pðXÞ ¼ inf
Q[Q

{EQ½X�}:

By the duality argument as in the single-period case, the above result has been obtained.

Also, one can build a multiperiod risk measure from the selection of test probabilities on

the product space. However, one feels more comfortable with working for ‘scenarios’ on

V, rather than generating the test probabilities on the product space V0.

Artzner et al. [3,4] also had the representation result by a collection of positive

increasing processes under a reference probability as follows:

Figure 2. Conditional probability P.

Figure 3. Randomized stopping time t.
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For each coherent risk measure, there is a set A of positive increasing processes A with

EP½AT � ¼ 1 such that for each value process X, its risk-adjusted value pðXÞ at date 0 is

given by

pðXÞ ¼ inf
A[A

EP

X
0#t#T

XtðAt 2 At21Þ

" #
:

The increments ðAt 2 At21Þ are the density with respect to the reference probability on the

product space V0. But, a set of increasing processes A does not seem to be easily

applicable in practice.

In this section, we present the representation result for a coherent multiperiod risk

measure by probability measures on a sample space V and randomized stopping times.

Proposition 3.3 is applied to get the following.

Proposition 4.1. If a multiperiod risk measure r is coherent, then there exists a family

{ðP; T Þ} of pairs consisting of probability measures on V and randomized stopping times

such that for each value process X

rðXÞ ¼ 2 inf
ðP;tÞ[{ðP;T Þ}

{E �P½Xt�};

where Xt ¼
P

0#t#TXt1{t¼t}. Conversely, from a set of distributions of a sample space V

along with randomized stopping times, we get a coherent risk measure for multiperiod

risks.

From the representation theorem, a risk measure is determined by ‘generalized

scenarios’ on base sample space V and a mixed strategy for when to observe the value.

Then, the worst value of the (coherent) risk measure is considered for multiperiod risks.

Since the time at which the regulator is coming to check the values is uncertain, the value

must be acceptable no matter when the regulator is coming.

Since ordinary stopping times are extreme points of randomized stopping times, we

note that a collection of pairs of probability measures on V and ordinary stopping times

generates a coherent multiperiod risk measure. However, not every coherent risk measure

can be represented by ordinary stopping times along with probability measures on V.

Remark 4.2. One could consider more general acceptance sets than convex cones, as was

done in [11]. If a multiperiod risk measure r is convex, then there exists a family {ðP; T Þ}

of pairs consisting of probability measures on V and randomized stopping times and

corresponding constants CðP;tÞ such that

rðXÞ ¼ 2 inf
ðP;tÞ[{ðP;T Þ}

{E �P½Xt� þ CðP;tÞ};

for each value process X.

5. Conclusion

Measurement and management of financial risks are important topics in mathematical

finance, and one of the critical steps is to construct proper measures of risk. The present

paper has derived a new characterization for coherent multiperiod risk measures.
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Due to this contribution, one can build a coherent risk measure (for multiperiod risks) by

choosing ‘generalized scenarios’ on base sample spaceV and a mixed strategy for when to

observe the value. For multiperiod coherent risk measures, it is described by a set of

probability measures on V and a set of stopping times, in which the additional source of

randomness is involved in an interesting way. This can be done by the fact that the

expected value under a probability measure on a product space V0 can be represented as

the expected value under a probability measure on a sample space V at date that is

randomly determined by a randomized stopping time. In words, the presence of

randomized stopping time implies the randomness for the time the value process is being

observed (i.e. a mixed strategy for when to observe the value). Therefore, a portfolio

process is considered ‘acceptable’ for multiperiod risks if and only if the values at

(randomly chosen) future times are acceptable as random variables.
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