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Abstract This paper concerns barrier options of American type where the under-
lying asset price is monitored for barrier hits during a part of the option’s lifetime.
Analytic valuation formulas of the American partial barrier options are provided as
the finite sum of bivariate normal distribution functions. This approximation method
is based on barrier options along with constant early exercise policies. In addition,
numerical results are given to show the accuracy of the approximating price. Our
explicit formulas provide a very tight lower bound for the option values, and more-
over, this method is superior in speed and its simplicity.

Keywords Partial barrier option · American option · Hitting time ·
Barrier approximation

JEL Classification G13 · C65

1 Introduction

Barrier options are widely traded in over-the-counter markets because they are more
flexible and cheaper than vanilla options. These options either cease to exist or come
into existence when some pre-specified asset price barrier is hit during the option’s
life. Merton (1973) has derived a down-and-out call price by solving the corresponding
partial differential equation with some boundary conditions. Rubinstein and Reiner
(1991) published closed form pricing formulas for various types of single barrier
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options. Rich (1994) also provided a mathematical framework to value barrier options.
Due to their popularity in a market, more complicated structures of barrier options
have been studied by a number of authors. Kunitomo and Ikeda (1992) derived a pric-
ing formula for double barrier options with curved boundaries as the sum of an infinite
series. Geman and Yor (1996) followed a probabilistic approach to derive the Laplace
transform of the double barrier option price. In these papers, the underlying asset price
is monitored for barrier hits or crossings during the entire life of the option.

On the other hand, Heynen and Kat (1994) studied partial barrier options where the
underlying price is monitored during only part of the option’s lifetime. Partial barrier
options have two classes. One is forward starting barrier options where the barrier
appears at a fixed date strictly after the option’s initial starting date. The other is early
ending barrier options where the barrier disappears at a specified date strictly before
the expiry date. They can be applied for various types of options according to the cli-
ents’ needs as controlling the starting or ending time of the monitoring period. Also,
they can be used as components to synthetically create other types of exotic options.
Heynen and Kat (1994) gave valuation formulas for partial barrier options in terms
of bivariate normal distribution functions. As a natural variation on the partial barrier
structure, window barrier options have become popular with investors, particularly in
foreign exchange markets. For a window barrier option, a monitoring period for the
barrier commences at the forward starting date and terminates at the early ending date.
(We refer to Guillaume 2003.)

In the case of American options which give their holders the additional flexibility
of early exercise, an exact and closed-form pricing solution has not existed because
the option price and the early exercise boundary must be determined simultaneously.
Consequently, the literature of American options has proposed only numerical solution
methods and analytical approximations.

The numerical methods include the finite difference method by Brennan and
Schwartz (1977) and Parkinson (1977) and the binomial model of Cox et al. (1979).
These numerical methods are quite flexible and simple to implement. However, even
after employing enhancement techniques such as control variates or convergence
extrapolation, they are very time consuming.

There are many approximation schemes developed to reduce this time consuming
task. Johnson (1983) expressed the put value as an approximate function of its param-
eters. Geske and Johnson (1984) approximated the American option price through an
infinite series of multivariate normal distribution functions. Barone-Adesi and Whaley
(1987) used Merton’s (1973) solution for perpetual American options and the quadratic
method of MacMillan (1986). Despite its high efficiency and the accuracy improve-
ments, this method is not convergent because there is no control parameter to adjust
to improve the accuracy.

Longstaff and Schwartz (2001) adapted Monte Carlo simulation methods to deal
with the American put problem. They addressed the optimal stopping problem in a
Monte Carlo framework by comparing the conditional expected value of continuing
with the value of immediate exercise if the option is currently in the money. Sulli-
van (2000) approximated the option value function through Chebyshev polynomials
and employed a Gaussian quadrature integration scheme at each discrete exercise
date. Although the speed and accuracy of the proposed numerical approximation can
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be enhanced via the Richardson extrapolation, its convergence properties are still
unknown.

Kim (1990), Jacka (1991), and Carr et al. (1992) obtained an analytic integral-form
solution for American options where the formulas represent the early premium of an
American option as an integral which has the early exercise boundary. Broadie and
Detemple (1996) provided tight lower and upper bounds for American call prices based
on the assumption that the early exercise boundary is a constant. Ju (1998) approxi-
mated the early exercise boundary as a multipiece exponential function and substitute
it by the early exercise premium integral, derived by Kim (1990), to price Ameri-
can options. Ingersoll (1998) described another approximation method of American
options based on barrier options: The exercise policy is approximated by a simple class
of functions, and the best policy within that class is selected by standard optimization
techniques. The advantages of this method are its simplicity and speed, even when
used in general-purpose computer programs such as spreadsheets. Concretely, he dealt
with a constant barrier approximation and an exponential barrier approximation for
American put. Chung et al. (2010) derived the essential formulae for solving the lower
bound and the optimal exercise boundary.

For the American barrier option problem, Gao et al. (2000) suggested an approx-
imation method for American barrier options. They applied the approximation tech-
niques of a standard American option to an American barrier option, and proposed
two approximation methods using Huang et al. (1996) and Ju (1998) to approximate
an American barrier’s exercise boundary. Dai and Kwok (2004) provided an analytic
formula for knock-in options and showed that the in-out barrier parity relationship for
American barrier options could not be obtained unlike the case of European barrier
options. Ingersoll (1998) presented American up-and-in put price by an approximation
method based on barrier options using constant and exponential exercise policies.

This paper concerns the barrier option of American type where the barrier appears
at a fixed date strictly after the option’s initial starting date. To the best of our knowl-
edge, the literature of American exotic option suggests no approximation formula for
American partial barrier options. Moreover, the numerical methods such as Monte
Carlo method and Lattice method for these options demand much time. This paper
extends the approximation method of American barrier option suggested in Ingersoll
(1998) to the case of partial barrier options of American type. The constant functions
are considered for early exercise boundaries. By our method, American partial barrier
option can be valued in a simple and speedy way.

This article is organized as follows. Section 2 presents a review of valuing American
barrier option using barrier derivatives. Section 3 provides the analytic approximation
of American partial barrier option. This section is divided into two subsections. The
first subsection covers the case that up-barrier is greater than or equal to strike price.
The second one presents valuation formulas for the digitals when up-barrier is less
than strike price. Finally, Sect. 4 provides the conclusion.

2 American barrier option using barrier derivatives: a review

In this section, we present a brief review of the valuation for American barrier
option using barrier derivatives described in Ingersoll (1998). This method provides
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a good approximation to the option price with the advantages of its simplicity and
speed.

Let r be the risk-free interest rate, q be a dividend rate, and σ > 0 be a constant.
We assume the price of the underlying asset S follows a geometric Brownian motion

St = S0 exp(μt + σ Wt )

where μ = r − q − σ 2

2 and Wt is a standard Brownian motion under the risk-neutral
probability P .

An American up-and-in put option will be exercised when it is sufficiently in the
money, but only after the stock price has risen to the knock-in barrier (or instrike).
To value this contract, it will be convenient to introduce the following digitals: Let
D(S, t ; A) be the value at time t of receiving one dollar at time T if and only if the
event A occurs, and DS(S, t ; A) be the value at time t of receiving one share of stock
at time T if and only if the event A occurs. The D is said to be a digital or binary
option and the DS is said to be a digital share. The quantity E(S, t, Kτ ; A) denotes
the value at time t of payment X − Kτ at the first time τ that the stock price S hits the
barrier Kτ provided the event A occurs before time T , where X is a strike price. The
E is said to be a first-touch digital.

Consider an American up-and-in put expiring T with strike price X . Let us denote
by U the up-barrier and by K ∗

t the optimal exercise policy. Let τB1 denote the first
time the stock price is equal to B1 and τB1 B2 denote the first time after τB1 that the
stock price is equal to B2.

Let A1 = {t < τU < T, τU K ∗ > T, ST < X} be the event of exercise at maturity
under the optimal policy, and A2 = {t < τU , τU K ∗ < T } be the event of early exercise
under the optimal policy. Then the value of the up-and-in put can be written as

U I P =X · D(S, t ; A1) − DS(S, t ; A1) + E(S, t, K ∗
t ; A2)

The barrier approximation for this put takes the maximum value within a class of
restricted policies. For example, for constant exercise policies k,

U I P ≥ U I Pconst = max
k

[X · D(S, t ; A3) − S(S, t ; A3) + E(S, t, k ; A4)]

where A3 = {t < τU < T, τUk > T, ST < X}, A4 = {t < τU , τUk < T }, and τUk

is the first time the stock price hits the constant policy barrier k after hitting the barrier
U . The values for these digitals are given by

D(S, t ; A3) = e−r(T −t)

{(
U

St

) 2μ

σ2
[

N

(
h1

(
U 2

St k

))
− N

(
h1

(
U 2

St X

))]

+
(

k

U

) 2μ

σ2
[

N

(
h1

(
St k2

U 2 X

))
− N

(
h1

(
St k

U 2

))]}

123



Valuation of American partial barrier options 171

DS(S, t ; A3) = St e
−q(T −t)

{(
U

St

) 2μ

σ2
[

N

(
h2

(
U 2

St k

))
− N

(
h2

(
U 2

St X

))]

+
(

k

U

) 2μ

σ2
[

N

(
h2

(
St k2

U 2 X

))
− N

(
h2

(
St k

U 2

))]}

E(S, t, k ; A4) = (X − k)

×
[(

k

St

)b−β ( k

U

)2β

N

(
g1

(
St k

U 2

))

+
(

k

St

)b+β (U

k

)2β

N

(
−g1

(
U 2

St k

))]

where N is the standard normal distribution function,

h1(z) = ln z + μ(T − t)

σ
√

T − t
, h2(z) = ln z + μ(T − t)

σ
√

T − t
, g1(z) = ln z + βσ 2(T − t)

σ
√

T − t

μ = r − q − 1

2
σ 2, μ = r − q + 1

2
σ 2, b = μ

σ 2 , and β =
√

b2 + 2r

σ 2 .

3 Analytic approximation for American partial barrier options

In this section, we consider the partial barrier option of American type. American
options give their holders the flexibility of early exercise. An American up-and-in put
option can be exercised before the expiration time when it is in the money, but only
after the stock price rises above the knock-in barrier. We consider the up-and-in put
where the barrier appears at a specified time T1 strictly after the option’s initiation.
That is, if the underlying asset price hits the up-barrier over the time period between
T1 and expiration T , then the put option can be exercised before or at time T with
strike price X . If the asset price never crosses the up-barrier between T1 and expiration
T , this option pays off zero.

In order to obtain the approximation to valuing American partial barrier option using
barrier derivatives under exercise policies, we use the digital opionsD(S, t ; A),DS(S,

t ; A) and E(S, t, Kτ ; A) for t < T1 defined in Sect. 2. We denote by τU (T1) the first
time that the stock price reaches the barrier U after time T1. For τUk(T1), it is the first
time that the stock price falls to the exercise policy k after τU (T1). Let K ∗ denote the
optimal exercise policy. Let A5 = {τU (T1) < T, τU K ∗(T1) > T, ST < X} be the event
of exercise at maturity under the optimal policy, and A6 = {τU K ∗(T1) < T } be the
event of early exercise under the optimal policy.

Then the value of this partial up-and-in put is written as

PU I P =X · D(S, t ; A5) − DS(S, t ; A5) + E(S, t, K ∗
t ; A6)

For the barrier approximation of this option, we consider a class of all constant
exercise policies. We let A7 = {τU (T1) < T, τUk(T1) > T, ST < X} be the event of
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exercise at maturity under a constant policy k, and A8 = {τUk(T1) < T } be the event
of early exercise under policy k. Then we can express the option price as

PU I Pconst = max
k∈Kc

[X · D(S, t ; A7) − DS(S, t ; A7) + E(S, t, k ; A8)] (3.1)

If the set of policies considered contains all continuous functions, then the resulting
put value will be exact. Since the set Kc is the set of all constant functions, then the
resulting value will be an approximation providing a (very tight) lower bound to the
put price.

We first present a useful Lemma to calculate the values D,DS, and E of digital, dig-
ital share, and first-touch digital. We recall that the standard normal density function
and distribution function

n(x) = 1√
2π

e− x2
2 and N (x) =

x∫
−∞

n(t)dt,

and the bivariate standard normal distribution function

N2(a, b; ρ) =
a∫

−∞

b∫
−∞

1

2π
√

1 − ρ2
exp

(
− x2 − 2ρxy + y2

2(1 − ρ2)

)
dxdy

where ρ is the coefficient of correlation.

Lemma 3.1 For any real a, α, β, γ , and δ,

a∫
−∞

1

δ
n

(
t − γ

δ

)
N (α + βt)dt = N2

(
a − γ

δ
,

α + βγ√
1 + β2δ2

; −βδ√
1 + β2δ2

)

∞∫
a

1

δ
n

(
t − γ

δ

)
N (α + βt)dt = N2

(
γ − a

δ
,

α + βγ√
1 + β2δ2

; βδ√
1 + β2δ2

)

Proof Letting u = t−γ
δ

,

a∫
−∞

1

δ
n

(
t − γ

δ

)
N (α + βt)dt =

a−γ
δ∫

−∞

α+β(δu+γ )∫
−∞

1

2π
e− (u2+v2)

2 dvdu.

Change the variables and define a coefficient of correlation ρ as follows:

x = u, y = v − βδu√
1 + β2δ2

, ρ = −βδ√
1 + β2δ2

.
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Then

a∫
−∞

1

δ
n

(
t − γ

δ

)
N (α + βt)dt

=
a−γ

δ∫
−∞

α+βγ√
1+β2δ2∫

−∞

1

2π
√

1 − ρ2
exp

(
− x2 − 2ρxy + y2

2(1 − ρ2)

)
dxdy

= N2

(
a − γ

δ
,

α + βγ√
1 + β2δ2

; −βδ√
1 + β2δ2

)
.

For the integral

∞∫
a

1

δ
n

(
t − γ

δ

)
N (α + βt)dt,

we can get the above result by a similar method. ��

Let us introduce a process Xt = 1
σ

ln
(

St
S0

)
. Then Xt is a Brownian motion with

drift μ
σ

. Define τu(T1) and τul(T1) by stopping times for this process defined as the first
time that Xt = u > X0 after time T1 and the first time after τu(T1) that Xt = l < u,
respectively.

Lemma 3.2 For x ≥ l, the probability that the process Xt crosses u after time T1,
and then hits l before expiration T , and XT is greater than x is

P(τul(T1) ≤ T, XT > x | X0 = 0)

= exp

(
2μ

σ
(l − u)

)
N2

(
u − μ

σ
T1√

T1
,

2l − 2u − x + μ
σ

T√
T

;−
√

T1

T

)

+ exp

(
2μl

σ

)
N2

(
−u − μ

σ
T1√

T1
,

2l − x + μ
σ

T√
T

;−
√

T1

T

)

Proof

P(τul(T1) ≤ T, XT > x | X0 = 0)

= P(XT1 < u, τul(T1) ≤ T, XT > x | X0 = 0)

+ P(XT1 ≥ u, τul(T1) ≤ T, XT > x | X0 = 0) (3.2)
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Since u > l,
{

XT1 ≥ u, τul(T1) ≤ T
}

is equivalent to
{

XT1 ≥ u, τl(T1) ≤ T
}
. Then

P(τul(T1) ≤ T, XT > x | X0 = 0)

= P(XT1 < u, τul(T1) ≤ T, XT > x | X0 = 0)

+ P(XT1 ≥ u, τl(T1) ≤ T, XT > x | X0 = 0)

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

P(τul(T1) ≤ T, XT > x | XT1 = x1)dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

P(τl(T1) ≤ T, XT > x | XT1 = x2)dx2

Using Lemma 1 in the Appendix of Ingersoll (1998), we have

P(τul(T1) ≤ T, XT > x | X0 = 0)

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

e
2μ
σ

(l−u)N

(
x1 + 2l − 2u − x + μ

σ
(T − T1)√

T − T1

)
dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

e
2μ
σ

(l−x2)N

(
2l − x2 − x + μ

σ
(T − T1)√

T − T1

)
dx2

= e
2μ
σ

(l−u)

u∫
−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

N

(
x1 + 2l − 2u − x + μ

σ
(T − T1)√

T − T1

)
dx1

+ e
2μl
σ

∞∫
u

1√
2πT1

e
− 1

2

(
x2+ μ

σ T1√
T1

)2

N

(
2l − x2 − x + μ

σ
(T − T1)√

T − T1

)
dx2

Applying Lemma 3.1, we obtain

P(τul(T1) ≤ T, XT > x | X0 = 0)

= exp

(
2μ

σ
(l − u)

)
N2

(
u − μ

σ
T1√

T1
,

2l − 2u − x + μ
σ

T√
T

;−
√

T1

T

)

+ exp

(
2μl

σ

)
N2

(
−u − μ

σ
T1√

T1
,

2l − x + μ
σ

T√
T

;−
√

T1

T

)

��

Lemma 3.3 The probability that the process Xt crosses u after time T1, and then falls
below l before time T is
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P(τul(T1) ≤ T | X0 = 0)

= exp

(
2μ

σ
(l − u)

)
N2

(
u − μ

σ
T1√

T1
,

l − 2u + μ
σ

T√
T

;−
√

T1

T

)

+ exp

(
2μl

σ

)
N2

(
−u − μ

σ
T1√

T1
,

l + μ
σ

T√
T

;−
√

T1

T

)

+ exp

(
2μu

σ

)
N2

(
u + μ

σ
T1√

T1
,

l − 2u − μ
σ

T√
T

;−
√

T1

T

)

+ N2

(
−u + μ

σ
T1√

T1
,

l − μ
σ

T√
T

;−
√

T1

T

)

Proof We note that

P(τul(T1) ≤ T | X0 = 0)

= P(τul(T1) ≤ T, XT > l | X0 = 0) + P(τu(T1) ≤ T, XT ≤ l | X0 = 0) (3.3)

since
{
τul(T1) ≤ T, XT ≤ l

} = {τu(T1) ≤ T, XT ≤ l
}
. The first probability of (3.3) is

given by Lemma 3.2 with x = l and the second one can be calculated by a similar
method to the proof of Lemma 3.2.

P(τu(T1) ≤ T, XT ≤ l | X0 = 0)

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

P(τu(T1) ≤ T, XT ≤ l | XT1 = x1)dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

P(τu(T1) ≤ T, XT ≤ l | XT1 = x2)dx2

When XT1 > u, the event
{
τu(T1) ≤ T, XT ≤ l

}
is equivalent to {XT ≤ l}. Thus

P(τu(T1) ≤ T, XT ≤ l | X0 = 0)

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

P(τu(T1) ≤ T, XT ≤ l | XT1 = x1)dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

P(XT ≤ l | XT1 = x2)dx2

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

e
2μ
σ

(u−x1)N

(
l − 2u + x1 − μ

σ
(T − T1)√

T − T1

)
dx1
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+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

N

(
l − x2 − μ

σ
(T − T1)√

T − T1

)
dx2

= e
2μu
σ

u∫
−∞

1√
2πT1

e
− 1

2

(
x1+ μ

σ T1√
T1

)2

N

(
l − 2u + x1 − μ

σ
(T − T1)√

T − T1

)
dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

N

(
l − x2 − μ

σ
(T − T1)√

T − T1

)
dx2

Applying Lemma 3.1 again to obtain

P(τu(T1) ≤ T, XT ≤ l | X0 = 0)

= exp

(
2μu

σ

)
N2

(
u + μ

σ
T1√

T1
,

l − 2u − μ
σ

T√
T

;−
√

T1

T

)
(3.4)

+ N2

(
−u + μ

σ
T1√

T1
,

l − μ
σ

T√
T

;−
√

T1

T

)

��
3.1 Formulas for the option with barrier greater than strike price

We assume X ≤ U . The valuation formulas for the digitals in (3.1) are

D(S, t ; A7)

= e−r(T −t)
(

U

St

) 2μ

σ2

[G1(X) − G1(k)] + e−r(T −t)
(

k

St

) 2μ

σ2

[G2(X) − G2(k)]

+ e−r(T −t)
(

k

U

) 2μ

σ2

[G3(X) − G3(k)] + e−r(T −t)
[
G4(X) − G4(k)

]
,

DS(S, t ; A7)

= St e
−q(T −t)

(
U

St

) 2μ

σ2 [
G1(X) − G1(k)

]+ St e
−q(T −t)

(
k

St

) 2μ

σ2 [
G2(X) − G2(k)

]

+ St e
−q(T −t)

(
k

U

) 2μ

σ2 [
G3(X) − G3(k)

]+ St e
−q(T −t)

[
G4(X) − G4(k)

]
,

E(S, t, k ; A8)

= (X − k)

[(
U

k

)β−b (U

St

)β+b

H1(k) +
(

k

St

)β+b

H2(k)

+
(

St

U

)β−b ( k

U

)β+b

H3(k) +
(

St

k

)β−b

H4(k)

]
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where Gi (X), Gi (X), and Hi (k)(i = 1, . . . , 4) are given in Theorems 3.1 and 3.3.

Remark 3.1 When the barrier appears immediately after the option’s initiation (i.e.,
T1 converges to 0), it can be checked that the above formulas for D,DS and E become
the values of these digitals for American barrier option given in Sect. 2.

Lemma 3.4 For l ≤ x ≤ u, the probability that the process Xt crosses u after time
T1, and then does not fall below l before expiration T , and its value at time T is less
than x is

P(τu(T1) < T, τul(T1) > T, XT ≤ x | X0 = 0)

= exp

(
2μu

σ

)
[F1(x) − F1(l)] + exp

(
2μl

σ

)
[F2(x) − F2(l)]

+ exp

(
2μ

σ
(l − u)

)
[F3(x) − F3(l)] + F4(x) − F4(l)

where

F1(x) = N2

(
u + μ

σ
T1√

T1
,

x − 2u − μ
σ

T√
T

;−
√

T1

T

)
,

F2(x) = N2

(
−u − μ

σ
T1√

T1
,

2l − x + μ
σ

T√
T

;−
√

T1

T

)
,

F3(x) = N2

(
u − μ

σ
T1√

T1
,

2l − 2u − x + μ
σ

T√
T

;−
√

T1

T

)
,

F4(x) = N2

(
−u + μ

σ
T1√

T1
,

x − μ
σ

T√
T

;−
√

T1

T

)
.

Proof

P(τu(T1) < T, τul(T1) > T, XT ≤ x | X0 = 0)

= P(τu(T1) < T, XT ≤ x | X0 = 0)−P(τu(T1) < T, τul(T1) ≤ T, XT ≤ x | X0 =0)

= P(τu(T1) < T, XT ≤ x | X0 = 0) − P(τul(T1) ≤ T, XT ≤ x | X0 = 0)

= P(τu(T1) < T, XT ≤ x | X0 = 0) − P(τul(T1) ≤ T | X0 = 0)

+ P(τul(T1) ≤ T, XT > x | X0 = 0)

The first probability is obtained from (3.4) with l = x . The second and third proba-
bilities are calculated by Lemmas 3.3 and 3.2. ��
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We now consider the digital options for American up-and-in put where the under-
lying asset price is monitored over the time period between T1 and maturity T under a
constant exercise policy k. The values of these options are determined from the above
Lemmas.

Theorem 3.1 For X ≤ U, the values of a digital option and a digital share at time
t < T1 for the event A7 = {τU (T1) < T, τUk(T1) > T, ST ≤ X

}
are

D(S, t; A7)

= e−r(T −t)
(

U

St

) 2μ

σ2

[G1(X) − G1(k)] + e−r(T −t)
(

k

St

) 2μ

σ2

[G2(X) − G2(k)]

+ e−r(T −t)
(

k

U

) 2μ

σ2

[G3(X) − G3(k)] + e−r(T −t)[G4(X) − G4(k)],
DS(S, t; A7)

= St e
−q(T −t)

(
U

St

) 2μ

σ2 [
G1(X) − G1(k)

]+ St e
−q(T −t)

(
k

St

) 2μ

σ2 [
G2(X) − G2(k)

]

+ St e
−q(T −t)

(
k

U

) 2μ

σ2 [
G3(X) − G3(k)

]+ St e
−q(T −t)

[
G4(X) − G4(k)

]

where

G1(X) = N2

(
h3

(
U

St

)
,−h1

(
U 2

St X

)
;−
√

T1 − t

T − t

)
,

G2(X) = N2

(
−h3

(
U

St

)
, h1

(
k2

St X

)
;−
√

T1 − t

T − t

)
,

G3(X) = N2

(
−h3

(
St

U

)
, h1

(
St k2

U 2 X

)
;−
√

T1 − t

T − t

)
,

G4(X) = N2

(
h3

(
St

U

)
,−h1

(
St

X

)
;−
√

T1 − t

T − t

)
,

and

h1(z) = ln z + μ(T − t)

σ
√

T − t
, h3(z) = ln z + μ(T1 − t)

σ
√

T1 − t
.

Gi (X) is the same as Gi (X) except μ = r − q + σ 2

2 in replacement of μ for
i = 1, 2, 3, 4.
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Proof Apply Lemma 3.4 with letting u = 1
σ

ln U
St

, l = 1
σ

ln k
St

, and x = 1
σ

ln X
St

to
derive the risk-neutral probability of exercise at maturity. Then

P(τU (T1) < T, τUk(T1) > T, ST ≤ X | St )

=
(

U

St

) 2μ

σ2

[G1(X) − G1(k)] +
(

k

St

) 2μ

σ2

[G2(X) − G2(k)]

+
(

k

U

) 2μ

σ2

[G3(X) − G3(k)] + G4(X) − G4(k)

where Gi (X) for i = 1, 2, 3, 4 are defined as above. Then the value of digital option
D(S, t; A7) at time t

D(S, t; A7) = e−r(T −t) P(τU (T1) < T, τUk(T1) > T, ST ≤ X | St )

is obtained as desired. The digital share DS(S, t; A7) can be valued by changing μ

to μ = r − q + σ 2

2 and replacing the discount factor e−r(T −t) by St e−q(T −t) (See for
example Ingersoll 2000). ��
Theorem 3.2 The value of a digital option and a digital share at time t for the event
A8 = {τUk(T1) < T } are

D(S, t; A8)

= e−r(T −t)

[(
U

St

) 2μ

σ2

G1(k) +
(

k

St

) 2μ

σ2

G2(k) +
(

k

U

) 2μ

σ2

G3(k) + G4(k)

]
,

(3.5)

DS(S, t; A8)

= St e
−q(T −t)

[(
U

St

) 2μ

σ2

G1(k) +
(

k

St

) 2μ

σ2

G2(k) +
(

k

U

) 2μ

σ2

G3(k) + G4(k)

]

Proof Apply Lemma 3.3 with u = 1
σ

ln U
St

, l = 1
σ

ln k
St

, and x = 1
σ

ln X
St

to derive
the risk-neutral probability of early exercise. Then

P(τUk(T1) ≤ T | St ) =
(

U

St

) 2μ

σ2

G1(k) +
(

k

St

) 2μ

σ2

G2(k) +
(

k

U

) 2μ

σ2

G3(k) + G4(k)

Thus, the value of digital option at time t

D(S, t; A8) = e−r(T −t) P(τUk(T1) ≤ T | St )

is obtained. The digital share, DS(S, t; A8) can be valued as in Theorem 3.1. ��
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Under a constant exercise policy, the up-and-in put option will be exercised early prior
to maturity for X − k if the stock price hits the up-barrier U after T1, and then falls to
k after τU (T1) before maturity. Now we consider the value of a first-touch digital for
time τUk(T1). We examine the case when there is no dividend on the stock first.

Lemma 3.5 If the stock does not pay dividends, the value of a first-touch digital for
the event A8 = {τUk(T1) < T } is

E(S, t, k; A8)

= X − k

k
St

[(
U

St

) 2r
σ2 +1

G̃1(k) +
(

k

St

) 2r
σ2 +1

G̃2(k) +
(

k

U

) 2r
σ2 +1

G̃3(k) + G̃4(k)

]

where G̃i (k) is the same as Gi (k) except μ̃ = r + 1
2σ 2 in replacement of μ for

i = 1, 2, 3, 4.

Proof The first-touch digital pays X − k at time τUk(T1). This money can be used to
purchase X−k

k shares of the stock at that time. Since the shares do not pay dividends,
it is worth X−k

k ST at maturity, i.e.,

E(S, t, k; A8) = X − k

k
DS(S, t; A8)

where DS(S, t; A8) is the value when q = 0 in (3.5). ��
Theorem 3.3 The value of the first-touch digital for the event A8 is

E(S, t, k; A8) = (X − k)

[(
U

k

)β−b (U

St

)β+b

H1(k) +
(

k

St

)β+b

H2(k)

+
(

St

U

)β−b ( k

U

)β+b

H3(k) +
(

St

k

)β−b

H4(k)

]

where

H1(k) = N2

(
g2

(
U

St

)
,−g1

(
U 2

St k

)
;−
√

T1 − t

T − t

)
,

H2(k) = N2

(
−g2

(
U

St

)
, g1

(
k

St

)
;−
√

T1 − t

T − t

)
,

H3(k) = N2

(
−g2

(
St

U

)
, g1

(
St k

U 2

)
;−
√

T1 − t

T − t

)
,

H4(k) = N2

(
g2

(
St

U

)
,−g1

(
St

k

)
;−
√

T1 − t

T − t

)
,
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and

g1(z) = ln z + βσ 2(T − t)

σ
√

T − t
, g2(z) = ln z + βσ 2(T1 − t)

σ
√

T1 − t
.

Proof When the stock price pays dividends, the asset price follows the continuous
diffusion process d St = (r − q)St dt + σ St dW . To eliminate the dividend term in the
process, we set

Vt = Sβ−b
t

where

b = μ

σ 2 and β =
√

b2 + 2r

σ 2 .

Then, by Ito’s lemma,

dVt = r Vt dt + (β − b)σ Vt dWt . (3.6)

We may apply Lemma 3.5 to the process Vt since (3.6) does not contain the dividend
term. The barriers for Vt corresponding to U and k are Uβ−b and kβ−b. Furthermore,
the volatility σ is replaced by (β − b)σ . Then the value of the first-touch digital for
the event A8 is

E(V, t, kβ−b; A8) = X − k

kβ−b
Vt

⎡
⎣(Uβ−b

Vt

) 2r
(β−b)2σ2 +1

H1(k) +
(

kβ−b

Vt

) 2r
(β−b)2σ2 +1

H2(k)

+
(

kβ−b

Uβ−b

) 2r
(β−b)2σ2 +1

H3(k) + H4(k)

⎤
⎦

where μ̂ = r + 1
2 (β − b)2σ 2,

H1(k) = N2

⎛
⎝ ln

(
Uβ−b

Vt

)
+ μ̂(T1 − t)

(β − b)σ
√

T1 − t
,

ln
(

kβ−bVt
U 2(β−b)

)
− μ̂(T − t)

(β − b)σ
√

T − t
;−
√

T1 − t

T − t

⎞
⎠ ,

H2(k) = N2

⎛
⎝− ln

(
Uβ−b

Vt

)
− μ̂(T1 − t)

(β − b)σ
√

T1 − t
,

ln
(

kβ−b

Vt

)
+ μ̂(T − t)

(β − b)σ
√

T − t
;−
√

T1 − t

T − t

⎞
⎠ ,

H3(k) = N2

⎛
⎝ ln

(
Uβ−b

Vt

)
− μ̂(T1 − t)

(β − b)σ
√

T1 − t
,

ln
(

kβ−bVt
U 2(β−b)

)
+ μ̂(T − t)

(β − b)σ
√

T − t
;−
√

T1 − t

T − t

⎞
⎠ ,
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H4(k) = N2

⎛
⎝− ln

(
Uβ−b

Vt

)
+ μ̂(T1 − t)

(β − b)σ
√

T1 − t
,

ln
(

kβ−b

Vt

)
− μ̂(T − t)

(β − b)σ
√

T − t
;−
√

T1 − t

T − t

⎞
⎠ .

Thus,

E(S, t, k; A8)

= (X − k)

(
St

k

)β−b
⎡
⎣(U

St

)(β−b)
(

2r
(β−b)2σ2 +1

)
H1(k)+

(
k

St

)(β−b)
(

2r
(β−b)2σ2 +1

)
H2(k)

+
(

k

U

)(β−b)
(

2r
(β−b)2σ2 +1

)
H3(k) + H4(k)

⎤
⎦

= (X − k)

[(
U

k

)β−b (U

St

)β+b

H1(k) +
(

k

St

)β+b

H2(k)

+
(

St

U

)β−b ( k

U

)β+b

H3(k) +
(

St

k

)β−b

H4(k)

]

where

H1(k) = N2

(
g2

(
U

St

)
,−g1

(
U 2

St k

)
;−
√

T1 − t

T − t

)
,

H2(k) = N2

(
−g2

(
U

St

)
, g1

(
k

St

)
;−
√

T1 − t

T − t

)
,

H3(k) = N2

(
−g2

(
St

U

)
, g1

(
St k

U 2

)
;−
√

T1 − t

T − t

)
,

H4(k) = N2

(
g2

(
St

U

)
,−g1

(
St

k

)
;−
√

T1 − t

T − t

)
,

and

g1(z) = ln z + βσ 2(T − t)

σ
√

T − t
, g2(z) = ln z + βσ 2(T1 − t)

σ
√

T1 − t
.

��

The following graph, Fig. 1, illustrates the American up-and-in put prices using the
approximation (3.1) with different values of initial spot S0 and barrier’s starting time
T1. Also, Fig. 2 shows the option prices with different values of up-barrier U and T1.
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Fig. 1 PU I Pconst result, varying S0 and T1 when U ≥ X (option parameters: U = 105, X = 100,

r = 0.05, σ = 0.3, and T = 1)
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Fig. 2 PU I Pconst result, varying U and T1 when U ≥ X (option parameters: S0 = 100, X = 100,

r = 0.05, σ = 0.3, and T = 1)

3.2 Formulas for the option with barrier less than strike price

We assume U < X . The valuation formulas for the digitals in (3.1) are

D(S, t; A7) =e−r(T −t)
(

U

St

) 2μ

σ2

[G1(U ) − G1(k) + G5(X) − G5(U )]

+ e−r(T −t)
(

k

St

) 2μ

σ2

[G2(X) − G2(k)] + e−r(T −t)
(

k

U

) 2μ

σ2

× [G3(X) − G3(k)] + e−r(T −t)
[
G4(U ) − G4(k) + G6(X) − G6(U )

]
,
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DS(S, t; A7)

= St e
−q(T −t)

(
U

St

) 2μ

σ2 [
G1(U ) − G1(k) + G5(X) − G5(U )

]

+ St e
−q(T −t)

(
k

St

) 2μ

σ2 [
G2(X) − G2(k)

]+ St e
−q(T −t)

(
k

U

) 2μ

σ2 [
G3(X) − G3(k)

]
+ St e

−q(T −t)[G4(U ) − G4(k) + G6(X) − G6(U )],

E(S, t, k ; A8)

= (X − k)

[(
U

k

)β−b (U

St

)β+b

H1(k) +
(

k

St

)β+b

H2(k)

+
(

St

U

)β−b ( k

U

)β+b

H3(k) +
(

St

k

)β−b

H4(k)

]

where Gi (X), Gi (X)(i = 1, . . . , 6), and Hi (k)(i = 1, . . . , 4) are given in Theo-
rems 3.1, 3.3 and 3.4.

Lemma 3.6 For x > u, the probability that the process Xt crosses u after T1, and
then does not fall below l before time T , and its value at time T is less than x is

P(τu(T1) < T, τul(T1) > T, XT ≤ x | X0 = 0)

= exp

(
2μu

σ

)
[F1(u) − F1(l) + F5(x) − F5(u)] + exp

(
2μl

σ

)
[F2(x) − F2(l)]

+ exp

(
2μ

σ
(l − u)

)
[F3(x) − F3(l)] + F4(u) − F4(l) + F6(x) − F6(u)

where

F5(x) = N2

(
−u − μ

σ
T1√

T1
,

x − 2u − μ
σ

T√
T

;
√

T1

T

)
,

F6(x) = N2

(
u − μ

σ
T1√

T1
,

x − μ
σ

T√
T

;
√

T1

T

)
.

Proof

P(τu(T1) < T, τul(T1) > T, XT ≤ x | X0 = 0)

= P(τu(T1) < T, XT ≤ x | X0 = 0) − P(τul(T1) ≤ T | X0 = 0)

+ P(τul(T1) ≤ T, XT > x | X0 = 0)

= P(τu(T1) < T, XT ≤ u | X0 = 0) + P(τu(T1) < T, u < XT ≤ x | X0 = 0)

− P(τul(T1) ≤ T | X0 = 0) + P(τul(T1) ≤ T, XT > x | X0 = 0).
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The third and fourth probabilities above are calculated by Lemmas 3.3 and 3.2. The
first probability comes from (3.4) with a replacement of l by u. Thus we only need to
prove the second probability.

P(τu(T1) < T, u < XT ≤ x | X0 = 0)

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

P(τu(T1) < T, u < XT ≤ x | XT1 = x1)dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

P(τu(T1) < T, u < XT ≤ x | XT1 = x2)dx2

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2

P(u < XT ≤ x | XT1 = x1)dx1

+
∞∫

u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

P(τu(T1) < T, u < XT ≤ x | XT1 = x2)dx2

=
u∫

−∞

1√
2πT1

e
− 1

2

(
x1− μ

σ T1√
T1

)2 [
N

(
x − x1 − μ

σ
(T − T1)√

T − T1

)

−N

(
u − x1 − μ

σ
(T − T1)√

T − T1

)]
dx1 +

∞∫
u

1√
2πT1

e
− 1

2

(
x2− μ

σ T1√
T1

)2

e
2μ
σ

(u−x2)

×
[

N

(
x − 2u + x2 − μ

σ
(T − T1)√

T − T1

)
− N

(−u + x2 − μ
σ
(T − T1)√

T − T1

)]
dx2

= N2

(
u − μ

σ
T1√

T1
,

x − μ
σ

T√
T

;
√

T1

T

)
− N2

(
u − μ

σ
T1√

T1
,

u − μ
σ

T√
T

;
√

T1

T

)

+ e
2μu
σ

[
N2

(
−u − μ

σ
T1√

T1
,

x − 2u − μ
σ

T√
T

;
√

T1

T

)

−N2

(
−u − μ

σ
T1√

T1
,
−u − μ

σ
T√

T
;
√

T1

T

)]

��

Theorem 3.4 For X > U, the values of a digital option and a digital share at time
t < T1 for the event A7 = {τU (T1) < T, τUk(T1) > T, ST ≤ X

}
are

D(S, t; A7) =e−r(T −t)
(

U

St

) 2μ

σ2

[G1(U ) − G1(k) + G5(X) − G5(U )]
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+ e−r(T −t)
(

k

St

) 2μ

σ2

[G2(X) − G2(k)] + e−r(T −t)
(

k

U

) 2μ

σ2

× [G3(X) − G3(k)]+e−r(T −t)
[
G4(U )−G4(k) + G6(X)−G6(U )

]
,

DS(S, t; A7)

= St e
−q(T −t)

(
U

St

) 2μ

σ2 [
G1(U ) − G1(k) + G5(X) − G5(U )

]

+ St e
−q(T −t)

(
k

St

) 2μ

σ2 [
G2(X)−G2(k)

]+ St e
−q(T −t)

(
k

U

) 2μ

σ2 [
G3(X) − G3(k)

]
+ St e

−q(T −t)
[
G4(U ) − G4(k) + G6(X) − G6(U )

]
where

G5(X) = N2

(
−h3

(
U

St

)
,−h1

(
U 2

St X

)
;
√

T1 − t

T − t

)
,

G6(X) = N2

(
h3

(
St

U

)
,−h1

(
St

X

)
;
√

T1 − t

T − t

)
.

Gi (X) is the same as Gi (X) except μ = r − q + σ 2

2 in replacement of μ for
i = 1, . . . , 6.

Proof Apply Lemma 3.6 with having u = 1
σ

ln U
St

, l = 1
σ

ln k
St

, and x = 1
σ

ln X
St

.
Then we obtain the result similarly as in the proof of Theorem 3.1. ��

In the following, Fig. 3 illustrates the American up-and-in put prices using (3.1)
with different values of initial spot S0 and T1 when U < X . Also, Fig. 4 shows the
option prices with varying up-barrier U and T1.

We next present the values of American partial up-and-in put option by our for-
mulae and compare them with those by Monte Carlo method with an Antithetic Var-
iate (See for example Glasserman 2003) and by the Trinomial lattice model using
the adaptive mesh model (AMM).1 Table 1 shows the values of American partial
up-and-in put option whose monitoring period begins at predetermined time T1 with
varying initial price S0 and strike price X . The parameter values that we used are
U = 105, σ = 0.3, T = 0.5, T1 = 0.1, r = 0.05 and q = 0. The values of S0 vary
from 96 to 104 and the values of X from 95 to 105. The values PU I Pconst in Table 1 are
calculated by the formulae in Sect. 3.1. Table 2 shows the values of American partial
up-and-in put option with different levels of upper barrier U and time T1. The parame-
ter values in this computation are S0 = 100, X = 105, σ = 0.3, T = 0.5, r = 0.05

1 The adaptive mesh method (Figlewski and Gao 1999) sharply reduces nonlinearity error by grafting one
or more small sections of fine high-resolution lattice onto a tree with coarser time and price steps.
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Fig. 3 PU I Pconst result, varying S0 and T1 when U < X (option parameters: U = 105, X = 110,

r = 0.05, σ = 0.3, and T = 1)
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Fig. 4 PU I Pconst result, varying U and T1 when U < X (option parameters: S0 = 100, X = 110,

r = 0.05, σ = 0.3, and T = 1)

and q = 0. The values of U vary from 102 to 108 and the values of T1 from 0.1 to
0.4. The values PU I Pconst in Table 2 are computed by using the formulae in Sects.
3.1 and 3.2.

V (N ) is an option value of PU I Pconst using barrier options with constant policy
barriers in (3.1). N is the element number of constant policy set Kc to seek the best
policy where policies are evenly spaced from 0 to X . Since the American put option
comes into action only if the up-barrier is hit after T1, the option price PU I Pconst
decreases as the initial stock price gets farther apart from the up-barrier U . We notice
that as the number N of constant exercise policies increases, the option value V (N )

converges to a constant very quickly, as shown in Fig. 5.
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Table 1 Comparison of American partial barrier put option values PU I P with varying S0 and strike price
X

S0 X V(10) V(30) V(50) V(100) V(500) MC AMM5 k∗

96 95 1.3703 1.3736 1.3732 1.3736 1.3736 1.3878 1.3678 78.9925

97.5 1.7900 1.7937 1.7934 1.7939 1.7939 1.8000 1.7871 80.7495

100 2.2954 2.2989 2.2995 2.2995 2.2997 2.2973 2.2919 82.4900

102.5 2.8939 2.8963 2.8983 2.8983 2.8984 2.8637 2.8897 84.2140

105 3.5918 3.5918 3.5961 3.5961 3.5961 3.5369 3.5869 85.9215

98 95 1.4967 1.5003 1.4997 1.5003 1.5003 1.5123 1.4971 78.9450

97.5 1.9493 1.9532 1.9530 1.9534 1.9535 1.9332 1.9498 80.7007

100 2.4923 2.4959 2.4967 2.4967 2.4969 2.4654 2.4933 82.4300

102.5 3.1330 3.1351 3.1377 3.1377 3.1377 3.1524 3.1340 84.1525

105 3.8774 3.8774 3.8817 3.8817 3.8818 3.8249 3.8792 85.8585

100 95 1.5969 1.6007 1.6001 1.6007 1.6007 1.6042 1.6018 78.9070

97.5 2.0753 2.0793 2.0792 2.0796 2.0797 2.0918 2.0815 80.6617

100 2.6477 2.6513 2.6523 2.6523 2.6525 2.6504 2.6553 82.3900

102.5 3.3213 3.3232 3.3261 3.3261 3.3261 3.3026 3.3304 84.1115

105 4.1018 4.1018 4.1062 4.1062 4.1064 4.0656 4.1125 85.8060

102 95 1.6653 1.6693 1.6687 1.6693 1.6693 1.6754 1.6714 78.8880

97.5 2.1612 2.1653 2.1653 2.1657 2.1658 2.1535 2.1687 80.6325

100 2.7535 2.7571 2.7583 2.7583 2.7584 2.7357 2.7622 82.3700

102.5 3.4493 3.4510 3.4542 3.4542 3.4542 3.4204 3.4587 84.0807

105 4.2542 4.2542 4.2586 4.2586 4.2588 4.2626 4.2637 85.7745

104 95 1.6989 1.7029 1.7024 1.7030 1.7030 1.7109 1.7006 78.8785

97.5 2.2033 2.2075 2.2075 2.2078 2.2079 2.2134 2.2153 80.6227

100 2.8053 2.8089 2.8101 2.8101 2.8102 2.8181 2.8265 82.3500

102.5 3.5118 3.5134 3.5168 3.5168 3.5168 3.4879 3.5249 84.0602

105 4.3284 4.3284 4.3328 4.3328 4.3330 4.3276 4.3196 85.7640

Option parameters: U = 105, T1 = 0.1, T = 0.5, σ = 0.3, r = 0.05, q = 0. V (N ) is an option
value of PU I Pconst where N is the number of constant policy barriers. MC is a result of simulation using
the Antithetic Variates, a Variance Reduction Method of Monte Carlo simulation. AMM5 is a result of
Trinomial lattice method by the AMM with level 5. k∗ is the optimal policy barrier for V (10000)

MC is a result of simulation using the Antithetic Variates, a Variance Reduction
Method of Monte Carlo simulation. For the American partial barrier option using
policy barriers, Monte Carlo method requires much larger amount of computer time
because a large number of sample paths and policy barriers, and a large enough moni-
toring frequency must be needed. For the Monte Carlo approximation in Tables 1 and
2, the computer time is more than 10,000 times as long as for our formulae method to
obtain the similar results under the same policy numbers. For the MC results in Tables
1 and 2, a monitoring frequency is 1,000, the number of sample paths is 5,000, and
the number of policy barriers (evenly spaced from 0 to X ) is 100.

AMM5 is an outcome of Trinomial lattice model by the adaptive mesh model
presented in Figlewski and Gao (1999). This is the approach for constructing a lattice-
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Table 2 Comparison of American partial barrier put option values PU I P with varying U and T1

U T1 V(10) V(30) V(50) V(100) V(500) MC AMM5 k∗

102 0.1 5.3817 5.3817 5.3837 5.3851 5.3852 5.3874 5.3743 85.3230

0.2 3.8061 3.8169 3.8152 3.8170 3.8170 3.8102 3.8358 87.2340

0.3 2.5479 2.5579 2.5603 2.5610 2.5611 2.5616 2.5567 89.5545

0.4 1.4306 1.4319 1.4333 1.4333 1.4334 1.4301 1.4026 92.8830

104 0.1 4.5022 4.5022 4.5061 4.5061 4.5065 4.5101 4.4840 85.6485

0.2 3.1057 3.1157 3.1150 3.1155 3.1157 3.1314 3.0931 87.5490

0.3 1.9848 1.9938 1.9950 1.9950 1.9952 1.9782 1.9721 89.8800

0.4 1.0050 1.0050 1.0058 1.0061 1.0061 1.0111 0.9847 93.2400

106 0.1 3.7235 3.7237 3.7282 3.7282 3.7282 3.7152 3.7320 85.9635

0.2 2.5264 2.5350 2.5349 2.5349 2.5351 2.5285 2.5354 87.8430

0.3 1.5514 1.5588 1.5593 1.5593 1.5594 1.5496 1.5569 90.1950

0.4 0.7130 0.7130 0.7131 0.7134 0.7134 0.7114 0.7099 93.5760

108 0.1 3.0181 3.0207 3.0228 3.0228 3.0228 3.0042 3.0068 86.2890

0.2 2.0242 2.0312 2.0315 2.0315 2.0315 2.0362 2.0185 88.1475

0.3 1.1960 1.2018 1.2019 1.2019 1.2019 1.1914 1.1909 90.4890

0.4 0.4971 0.4971 0.4971 0.4971 0.4972 0.4936 0.4894 93.8910

Option parameters: S0 = 100, X = 105, σ = 0.3, T = 0.5, r = 0.05, q = 0. V (N ) is an option value
of PU I Pconst where N is the number of constant policy barriers. MC is a result of simulation using the
Antithetic variates, a Variance Reduction Method of Monte Carlo simulation. AMM5 is a result of trinomial
lattice method by the AMM with level 5. k∗ is the optimal policy barrier for V (10000)
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Fig. 5 PU I Pconst result, varying policy barrier number N (option parameters: S0 = 100, X = 100, U =
105, r = 0.05, σ = 0.3, T1 = 0.1, and T = 0.5)

based valuation model that allows the user to vary the resolution in different parts of
the tree. While the binomial tree for American barrier options is not as efficient as
it is for standard American options, this adaptive mesh method can provide a more
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efficient benchmark for comparison with our explicit formulas. The AMM for barrier
options with level 5 is used in Tables 1 and 2.

We note that the last column k∗ is the optimal policy barrier when N = 10, 000,
and the best constant policy depends, of course, on option parameters such as initial
stock price, strike price, upper barrier, and T1.

4 Conclusion

This paper studies the valuation problem of American partial barrier option. Because
a wide variety of traded options are American type, the problem of valuing American
options has been an important topic in financial economics. The literature of Ameri-
can option has proposed good numerical solution methods and anlytic approximations.
However, American (partial) barrier options are much more difficult to price. To the
best of our knowledge, the literature suggests no approximation formula for Ameri-
can partial barrier options. This paper adopts the barrier approximation method under
constant exercise policies, and provides an analytic approximation as the finite sum
of bivariate normal distribution functions. Due to this contribution, one can calculate
the American partial barier option prices in a simple and speedy way.
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