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PARETO EQUILIBRIA WITH COHERENT MEASURES OF RISK
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In this paper, we provide a definition of Pareto equilibrium in terms of risk measures,
and present necessary and sufficient conditions for equilibrium in a market with finitely
many traders (whom we call “banks”) who trade with each other in a financial market.
Each bank has a preference relation on random payoffs which is monotonic, complete,
transitive, convex, and continuous; we show that this, together with the current position
of the bank, leads to a family of valuation measures for the bank. We show that a market
is in Pareto equilibrium if and only if there exists a (possibly signed) measure that, for
each bank, agrees with a positive convex combination of all valuation measures used
by that bank on securities traded by that bank.
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1. INTRODUCTION

In this paper, we provide a definition of Pareto equilibrium in terms of risk measures,
and present necessary and sufficient conditions for equilibrium in a market with finitely
many traders (whom we call “banks”) who trade with each other in a financial market.

Let X be a set of traded random payoffs. Let a preference relation over X be given by a
binary order �. We say x is preferred to y if x � y. A binary order � on X is monotonic
if x � y whenever x ≥ y, and complete if y � x whenever x � y is not the case. Let Gx

denote the “at least as good as x” set {y ∈ X : y � x} and let Bx denote the “at least as
bad as x” set {y ∈ X : x � y}. A binary relation � is transitive if x � z whenever x � y
and y � z for any x, y, and z in X . � is convex if Gx is convex for all x ∈ X . If Gx and Bx

are closed for all x ∈ X then � is continuous.
We assume that each bank has its own preference relation �i that is monotonic, com-

plete, transitive, convex, and continuous. Following Duffie (1988, p. 36), a continuous
preference relation on a set X is represented by a continuous utility function if X is a
convex, subset of a separable normed space: There exists a nondecreasing real-valued
function Ui on the set X such that

x �i y ⇐⇒ Ui (x) ≥ Ui (y).
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We assume (e.g. Mossin 1966) that each bank makes trades to improve its utility
(preference). Suppose that the random payoff of the current position of a bank is w0. The
bank wants to improve its position by taking a new trade resulting in a preferred one.
The set Gw0 = {y ∈ X : y � w0} satisfies the axioms on acceptance sets defined in Artzner
et al. (1999), as extended in Artzner et al. (1998), Artzner et al. (2000); for completeness
we present this briefly in Section 2. We then have a representation in terms of risk mea-
sures associated with an acceptance set. We can describe Gw0 by a set R of “generalized
scenarios” or probability measures on � as follows:

Gw0 = {X : ER[X] ≥ cR for all R ∈ R},
where cR are nonpositive constants corresponding to R ∈ R. For the purposes of this
paper we assume R is a finite set.

When each bank decides whether or not to accept an additional trade, it would like
to improve its position in terms of “scenarios” or risk measures. In other words, we may
assume that it makes a decision that depends only on its own “level curve” for its utility
(preference relation).

Carr, Geman, and Madan (2001) have considered a market under similar assumptions.
They considered net trades rather than positions, and they called measures R ∈ R “test
measures.” This corresponds to a change of coordinates in which the new origin is w0.
In these new coordinates, the floor associated with each test measure will typically be
different. Therefore, for example, two banks with similar preferences but different initial
positions will have different preferences on new trades.

Carr et al. (2001) classified test measures on net trades as valuation test measures if
the corresponding floor is zero and as stress test measures if it is negative. Therefore, this
classification changes if the initial position w0 is changed. (See Section 3 for details.)

The theory of utility maximization postulates that each individual may have a different
utility functions. Since each bank has a different initial position as well as a different
preference relation, we model each bank as having its own risk measure (set of test
measures). As mentioned earlier, we approach a Pareto equilibrium with utility-based
arguments and risk measures.

In Section 2, we define Pareto equilibrium in a weak sense and provide a simple con-
dition for equilibrium. In Section 3, we provide a definition of Pareto equilibrium in a
strong sense. We give a necessary and sufficient condition for equilibrium in terms of test
measures. In Section 4, we consider “incomplete” markets. We assume that for each bank
there is a linear space of random payoffs in which that bank can trade. We then find a
slightly weaker condition for a Pareto equilibrium than that in Section 3. We present an
example which illustrates that our result is tight.

2. RISK MEASURES AND ACCEPTANCE SETS

The material in this section is closely related to the notion of coherent measures of risk
as presented in Artzner et al. (1999) and discussed in Artzner et al. (1998).

Let � be the set of all possible states; we assume it is a finite set. Let X denote the set
of future net worths—that is, the set of all functions on �.

We state axioms for acceptance sets, sets of future net worths that are “acceptable.”

AXIOM 2.1. The acceptance set A is convex.

AXIOM 2.2. If the acceptance set A contains X and X ≤ Y , then A contains Y .
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AXIOM 2.3. The acceptance set A is closed.

AXIOM 2.4. The acceptance set A and its complement are nonempty.

DEFINITION 2.1. A risk measure is a mapping from X into R.

AXIOM C (Convexity). For all X, Y ∈ X , and 0 ≤ λ ≤ 1,

ρ(λX + (1 − λ)Y) ≤ λρ(X) + (1 − λ)ρ(Y).

AXIOM T (Translation invariance). For all X ∈ X and all real number α,

ρ(X + α) = ρ(X) − α.

AXIOM M (Monotonicity). For all X and Y ∈ X with X ≤ Y ,

ρ(Y) ≤ ρ(X).

DEFINITION 2.2. A risk measure ρ is called weakly coherent if it satisfies the above
three axioms of convexity, translation invariance, and monotonicity.

A correspondence between acceptance sets and risk measures can be defined as follows.

DEFINITION 2.3. The risk measure associated with the acceptance set A is the
mapping ρA from X to R defined by

ρA(X) = inf{m | m + X ∈ A}.

DEFINITION 2.4. The acceptance set associated with a risk measure ρ is the set de-
noted by Aρ and defined by

Aρ = {X ∈ X | ρ(X) ≤ 0}.
The next two propositions relate the axioms on acceptance sets and the axioms on risk

measures.

PROPOSITION 2.5. If a risk measure ρ is weakly coherent, then the acceptance set Aρ

satisfies Axioms 2.1, 2.2, 2.3, 2.4, and ρ = ρAρ
.

PROPOSITION 2.6. If the setA′ satisfies Axioms 2.1, 2.2, 2.3, and 2.4, the risk measureρA′

is weakly coherent and Aρ = A′.

Finally we have the following representation of risk measures by “scenarios” or prob-
ability measures and the corresponding floors.

PROPOSITION 2.7. A risk measure ρ is weakly coherent if and only if there exist a
nonempty family R of probability measures R on � and corresponding constants CR such
that

ρ(X) = − inf
R∈R

{ER[X] + CR} .
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Proof . The proof is essentially the same as that in Artzner et al. (1999). �

3. THE MODEL

Let � = {ω1, ω2, . . . , ωK} be the set of all possible outcomes and X a random payoff
(a function on �). We assume that there are I banks labeled i (i = 1, . . . , I). We allow
each bank to have a different set of test measures. Suppose that the random payoff of
the current position of a bank is w0. Then the set Gw0 = {y ∈ X : y � w0} of the random
payoffs preferred to w0 can be described as

Gw0 = {X : ER[X] ≥ cR for all R ∈ R}.
Consider the set Nw0 = {δ : w0 + δ � w0} of net trades resulting in a position preferred

to w0. This set Nw0 satisfies Axioms 2.1, 2.2, and 2.3; therefore we get a similar represen-
tation by a set of test measures:

Nw0 = {δ : ER[δ] ≥ cR,w0 for all R ∈ R}.
Carr et al. (2001) called each cR,w0 a “floor.” It is easy to see that if w0 � z0 and z0 � w0

then the set R of test measures in the representation is the same, but cR,z0 may be different
from cR,w0 . The floor associated with each test measure depends on the current position of
each bank. We call test measures with zero floors valuation measures. The set of valuation
measures determined by the bank’s preference and current position contributes to valu-
ation of additional trades of the bank at that position. We use Ri = {Ri1, Ri2, . . . , Rini }
to denote the (assumed finite) set of valuation measures of bank i.

In this section, we define Pareto equilibrium in a weak sense as the following: A market
is in weak-sense Pareto equilibrium if there is no new “deal (or trade)” between any pair
of banks that can increase one bank’s preference and at the same time not reduce the
other bank’s preference.

DEFINITION 3.1. Two banks, say Bank i1 and Bank i2, are in Pareto equilibrium if there
is no net trade X that satisfies

ERi1 j [X] ≥ 0 ( j = 1, . . . , ni1 ),

ERi2 j [−X] ≥ 0 ( j = 1, . . . , ni2 ),

and at least one of the above inequalities is strict.

In weak-sense Pareto equilibrium, the following: Linear Programming Problem (LP)

Max

( ni1∑
j=1

ERi1 j [X]

)
−

( ni2∑
j=1

ERi2 j [X]

)

subject to −ERi1 j [X] ≤ 0 ( j = 1, . . . , ni1 ),

ERi2 j [X] ≤ 0 ( j = 1, . . . , ni2 ),

is bounded. (In that case, the optimal value equals 0.) We can write this LP as

Max
∑

j

∑
k

Ri1 j (ωk)X(ωk) −
∑

j

∑
k

Ri2 j (ωk)X(ωk)

subject to A1 X ≤ b

A2 X ≤ b,
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where

A1 =




−Ri11(ω1) −Ri11(ω2) . . . −Ri11(ωK )

−Ri12(ω1) −Ri12(ω2) . . . −Ri12(ωK )
...

...
. . .

...

−Ri1ni1
(ω1) −Ri1ni1

(ω2) . . . −Ri1ni1
(ωK )


 ,

A2 =




Ri21(ω1) Ri21(ω2) . . . Ri21(ωK )

Ri22(ω1) Ri22(ω2) . . . Ri22(ωK )
...

...
. . .

...

Ri2ni2
(ω1) Ri2ni2

(ω2) . . . Ri2ni2
(ωK )


 ,

and b = (0, . . . , 0)t.
Let Y = (y1, y2, . . . , yni1 +ni2

) represent the corresponding dual variables. The dual prob-
lem can be written as

Min Yb

subject to YA1 = C

YA2 = C,

where C = (
∑ni1

j=1 Ri1 j (ω1) − ∑ni2
j=1 Ri2 j (ω1), . . . ,

∑ni1
j=1 Ri1 j (ωK ) − ∑ni2

j=1 Ri2 j (ωK )). Note
that the dual constraints would be equality constraints if the primal variables were unre-
stricted in sign.

By the Dual Theorem (e.g., see Winston 1991, p. 276) the dual problem is feasible if and
only if the primal LP is bounded. The feasibility of the dual problem means that there
exists at least one (ni1 + ni2 )-dimensional vector (y1, y2, . . . , yni1+ni2

) that is nonnegative
and satisfies, for each ωk (k = 1, . . . , K),

−
ni1∑
j=1

Ri1 j (ωk)yj +
ni2∑
j=1

Ri2 j (ωk)yni1+ j =
ni1∑
j=1

Ri1 j (ωk) −
ni2∑
j=1

Ri2 j (ωk)

or, equivalently,

ni1∑
j=1

Ri1 j (ωk)(1 + yj ) =
ni2∑
j=1

Ri2 j (ωk)(1 + yni1 + j ).(3.1)

Summing up with respect to k on both sides, we get

ni1∑
j=1

(1 + yj ) =
ni2∑
j=1

(1 + yni1+ j ).

Let ȳ denote the value of this sum and let α j = (1 + yj )
ȳ ( j = 1, . . . , ni1 ) and β j =

(1 + yni1
+ j )

ȳ ( j = 1, . . . , ni2 ). Then we can rewrite (3.1) as

ni1∑
j=1

α j Ri1 j (ωk) =
ni2∑
j=1

β j Ri2 j (ωk),

where 0 < αj, βj < 1, and
∑ni1

j=1 α j = ∑ni2
j=1 β j = 1.
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Therefore, we have the following propositions.

PROPOSITION 3.2. A market is in Pareto equilibrium in the weak sense if and only if
for any pair of banks, Bank i1 and Bank i2 (1 ≤ i1, i2 ≤ I), there exist αj, βj such that 0 <

α j , β j < 1,
∑n1

j=1 α j = ∑n2
j=1 β j = 1, and

ni1∑
j=1

α j Ri1 j (ω) =
ni2∑
j=1

β j Ri2 j (ω) f or all ω ∈ �.

In other words, the positive convex hulls of any pair of {Ri : 1 ≤ i ≤ I} intersect
each other, where we define the positive convex hull of a finite set A = {a1, a2, . . . , an}
as {∑n

i=1 λi ai :
∑n

i=1 λi = 1, λi > 0 for all i}.

4. PARETO EQUILIBRIUM IN A MARKET

In this section, we define the notion of Pareto equilibrium among I banks in a strong
sense.

DEFINITION 4.1. A market consisting of I banks is in Pareto equilibrium in the strong
sense if there is no deal X = (X1, X2, . . . , XI ) in the market that satisfies

∑I
i=1 Xi = 0,

ERi j [Xi ] ≥ 0

for each i, j (i = 1, . . . , I ; j = 1, . . . , ni), and at least one of the above inequalities is strict.

Clearly, if a market is in Pareto equilibrium in the strong sense, it is in equilibrium in
the weak sense. From now on, we use the notion of Pareto equilibrium in the strong sense
with no specification.

PROPOSITION 4.2. A market consisting of I banks is in Pareto equilibrium if and only if

I⋂
i=0

co+{Ri } �= ∅,

where co+{Ri } = {∑n1
j=1 αi j Ri j : 0 < αi j < 1,

∑n1
j=1 αi j = 1 and Ri j ∈ Ri }; that is, the in-

tersection of all positive convex hulls of Ri (i = 1, . . . , I) is nonempty.

Proof . Suppose that the market is in Pareto equilibrium. Consider the following LP:

Max
∑

i

∑
j

ERi j [Xi ]

subject to ERi j [Xi ] ≥ 0 for all i , j (i = 1, . . . , I, j = 1, . . . , ni )

I∑
i=1

Xi = 0,

or

Max
∑

i

∑
j

∑
k

Ri j (ωk)Xi (ωk)

subject to Au X ≤ 0

Al X = 0,

(4.1)
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where the matrix Au is a block diagonal matrix


Au
1 0 . . . 0

0 Au
2 . . . 0

...
...

. . .
...

0 0 . . . Au
I


 ,

whose ith block Au
i is of the form



−Ri1(ω1) −Ri1(ω2) . . . −Ri1(ωK )

−Ri2(ω1) −Ri2(ω2) . . . −Ri2(ωK )
...

...
. . .

...

−Rini (ω1) −Rini (ω2) . . . −Rini (ωK )


 ,

the matrix Al consists of K row vectors, each vector Al
j has I × K elements and is of the

form (
0, ··, 1 j , ··, 0; 0, ··, 1 j , ··, 0; · · · ; 0, ··, 1 j , ··, 0

)
,

and X = (X1(ω1), X1(ω2), . . . , X1(ωK ); X2(ω1), X2(ω2), . . . , X2(ωK ); . . . ; XI (ω1), XI (ω2),
. . . , XI (ωK ))t is a vector of the primal variables.

We use an argument similar to that in Section 3. Let y11, y12, . . . , y1n1 ; y21, y22, . . . ,

y2n2 ; . . . ; yI1, yI2, . . . , yInI ; z1, z2, . . . , zK be the dual variables. Then the dual constraints
of the above LP can be written as

−
ni∑

j=1

Ri j (ωk)yi j + zk =
ni∑

j=1

Ri j (ωk),

where yij ≥ 0, zk unrestricted in sign. Rewriting this as

ni∑
j=1

(1 + yi j )Ri j (ωk) = zk,

and summing up over k, we have

ni∑
j=1

(1 + yi j ) =
K∑

k=1

zk.

Let z̄ denote this sum. Therefore the boundedness of LP implies that there exist yij and
zk such that

ni∑
j=1

1 + yi j

z̄
Ri j (ωk) = zk

z̄
.

The right-hand side is independent of i. Therefore, letting αi j = 1 + yi j

z̄ ( j = 1, . . . , ni ),
there exist αij and zk such that

ni∑
j=1

αi j Ri j (ωk) = zk

z̄
,

where 0 < αij < 1 and
∑ni

j=1 αi j = 1 for each i. Hence, we get the desired result.
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Conversely, suppose that there exist βij and γk such that 0 < βi j < 1,
∑n1

j=1 βi j = 1 for

each i,
∑K

k=1 γk = 1, and

γk =
ni∑

j=1

βi j Ri j (ωk).

Then there exists a positive constant N such that Nβij ≥ 1. Set yij = Nβij − 1 ≥ 0 and
zk = Nγk. It is easy to check that these yij and zk are feasible solutions to the above dual
problem. By using the Dual Theorem again, the primal LP is bounded, which means the
market is in Pareto equilibrium.

5. “INCOMPLETE” MARKETS

So far, we implicitly allowed all banks to trade any random variables they want. We now
suppose that each bank trades only those payoffs in some linear space Mi. Let Xi be a
random variable on � and Xi ∈ Mi. We can append constraints BX = 0 to (4.1) where B
is a block diagonal matrix:

B =




B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . BI


 .

We assume that Mi is a (K − di) dimensional space, the ith block Bi is a (di × K) matrix,
and its row vectors, Bi1, . . . , Bidi , are linearly independent and orthogonal to Mi.

We introduce new dual variables ȳ11, . . . , ȳ1d1 ; ȳ21, . . . , ȳ2n2 ; . . . ; ȳI1, . . . , ȳIdI . Then
the dual constraints of the above LP are written as

−
ni∑

j=1

Ri j (ωk)yi j +
ni∑

j=1

Bi j (ωk)ȳi j + zk =
ni∑

j=1

Ri j (ωk),

where yij ≥ 0 and ȳi j , zk unrestricted in sign. Summing over k,

ni∑
j=1

(1 + yi j ) =
K∑

k=1

(
di∑

j=1

Bi j (ωk)ȳi j + zk

)
.

Let z̄ denote this sum, and set

µi (ωk) =
ni∑

j=1

1 + yi j

z̄
Ri j (ωk) =

di∑
j=1

ȳi j

z̄
Bi j (ωk) + zk

z̄

and

µ̄(ωk) = µi (ωk) −
di∑

j=1

ȳi j

z̄
Bi j (ωk).

Since Bij is orthogonal to Mi for each i, j,

Eµ̄[Xi ] = Eµi [Xi ]

if Xi ∈ Mi.
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PROPOSITION 5.1. Suppose that a market consists of I banks and Bank i can trade Xi for
Xi ∈ Mi. The market is in Pareto equilibrium if and only if there exists a (possibly signed)
measure µ̄ such that for each i, there is a probability measure µi ∈ co+{Ri } for which

Eµ̄[Xi ] = Eµi [Xi ]

for all Xi ∈ Mi.

We present a simple example illustrating the case in which we can find only a signed
(not positive) measure satisfying the conclusion of Proposition 5.1, even though a market
is in Pareto equilibrium.

EXAMPLE 5.2. Let � denote the set {ω1, ω2, ω3}. Suppose that Bank 1 trades only
securities in the linear space M1 = {(x, −x, y) : x, y ∈ R} and Bank 2 trades only secu-
rities in M2 = {(u, v, −v) : u, v ∈ R}. Then the vectors B1 = (1, 1, 0), B2 = (0, 1, 1) are
orthogonal to M1, M2 respectively, and M1 ∩ M2 = {(x, −x, x) : x ∈ R}.

We assume that Bank 1 has a valuation measure R1 = (R1(ω1), R1(ω2), R1(ω3)) =
(1, 0, 0) and Bank 2 has a valuation measure R2 = (R2(ω1), R2(ω2), R2(ω3)) = (0, 0, 1).
The market consisting of Bank 1 and Bank 2 is then in Pareto equilibrium because there is
no trade X ∈ M1 ∩ M2 such that ER1 [X] ≥ 0 and ER2 [X] ≤ 0 with at least one inequality
being strict.

Let µ̄ = (µ̄(ω1), µ̄(ω2), µ̄(ω3)) be a measure such that Eµ̄[X1] = Eµ1 [X1] = ER1 [X1]
and Eµ̄[X2] = Eµ2 [X2] = ER2 [X2] for all X1 ∈ M1 and X2 ∈ M2.

Since Eµ̄[X1] = ER1 [X1] for any X1 ∈ M1, we have

µ̄(ω1) − µ̄(ω2) = 1, µ̄(ω3) = 0.

On the other hand, since Eµ̄[X2] = ER2 [X2] for any X2 ∈ M2, we have

µ̄(ω2) − µ̄(ω3) = −1, µ̄(ω1) = 0.

Therefore, a signed measure µ̄ = (0, −1, 0) is the only possible measure.

The following corollary is an immediate consequence of Proposition 5.1. If there is
at least one bank that can trade all securities in a market, then a pricing measure µ̄ in
Proposition 5.1 has to be a probability measure.

COROLLARY 5.3. Suppose that there exists a bank that can trade any random variable in
a market. (Mi = R

K for some i.) Then the market is in Pareto equilibrium if and only if there
exists a probability measure µ̄ such that for each i, there exists a probability measure µi ∈
co+{Ri } for which

Eµ̄[Xi ] = Eµi [Xi ]

for all Xi ∈ Mi.

If all banks in a market can trade only those securities in the same subspace, then we
get the same result as in Proposition 4.2.

COROLLARY 5.4. Suppose M1 = M2 = · · · = MI . Then the market is in Pareto equi-
librium if and only if

I⋂
i=0

co+{Ri } �= ∅.
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