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ABSTRACT. We study the option valuation and hedging problem for the stochastic volatility
model. We devise a new iterative partial differential equation method that yields a solution
defined at discrete times, which converges to the true option value derived in Hull and White
[4]. The advantages of our method are that it is well suited to the discrete time hedging
procedure and is also amenable to numerical computation. Moreover, our method also allows
us to deal with the valuation and hedging problem under transaction costs as in Leland [7].

1. Introduction

Black and Scholes [1] derived the partial differential equation
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that must be satisfied by the option price f = f(S,t), assuming that the stock price S = Sy
satisfies the stochastic differential equation

dSt = ¢Stdt + O'Stth, (11)

where W; is the standard Brownian motion, and ¢, o are constants. From this equation,
they derived the Black-Scholes formula which is a basic formula in the derivative pricing.
However, when the volatility o is computed implicitly from the observed market prices of
options, it is not in general constant. This implied volatility looks rather like U-shaped as
a function of strike price which attains its minimum when strike price is near the current
stock price. One usually calls this situation a “smile effect,” or a “volatility smile.”

This suggests that it is not very realistic to model the volatility as a constant. It is then
natural to attempt to develop models in which the volatility is stochastic. One promising
model is the one suggested by Hull and White [4]. Let o be the volatility of the stock price
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process S; as in (1.1). They assumed that the variance V = o2 follows the independent

lognormal diffusion process,
dV = pVdt + E£VdZz, (1.2)

where p is the local drift of V' and & reflects the volatility of V. They, referring to Garman,
induced and studied the following partial differential equation for the option price f
of 9*f 2 O°f of of
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Let the mean variance V during the life of the option be given by V = T OT a%(t)dt. They
proved that the price of European option for their model can be obtained by integrating,
over the distribution of V, the Black-Scholes prices corresponding to each constant volatil-
ity o = VV. As a means of computation, they then derived a power series method, and
gave a formula for the first few terms assuming that the drift p of V is zero.

There are many other models dealing with the stochastic volatility. For example, Scott
[8] proposed and analyzed a mean-reverting Ornstein-Uhlenbeck process for volatility, and
showed that at least two options are necessary to form a hedging strategy and required
two call options plus stock, the two call options must have different expiration dates to
eliminate the uncertainty. He showed that the option prices can be computed via the
Monte Carlo simulation method and used a Kalman filter model to estimate the current
value of o. Johnson and Shanno [5] assumed that the random term in the variance are
completely diversifiable or there exists some asset that has the same random factor as the
variance to derive the partial differential equation, and found the option price by the Monte
Carlo simulation method. Stein and Stein [9] modeled stochastic volatility as the mean
reverting process with a reflecting barrier at zero to prevent volatility becoming negative
and developed an analytic approach based on Fourier inversion method. They all obtained
partial differential equations with two state variables for the option price which are very
similar to the one studied in [4], even though each has different assumption and approach.

In this paper, we take the Hull and White model and also assume that the stock price
process follows (1.1), V = o2 satisfies the equation (1.2), and thus the European option
price f satisfies the partial differential equation (1.3). Our approach, however, is different
from that of Hull and White. Instead of studying the partial differential equation (1.3)
directly, we devise an approximate problem based on certain iterative procedures at discrete
time intervals. We then show that the solution of this iterative problem converges to the
solution of the original problem (1.3). This method is naturally adapted to the easy
numerical computation. The solution of this approximate iterative procedure is easy to
handle. As a result, we obtain a discrete, hence more useful in practice, hedging method.
Moreover, the same argument can be applied to obtain Leland’s style option valuation and
discrete hedging method in the presence of the transaction costs.

Let us now describe our method, which we call an iterative PDE family method, or in
short, an iterative problem: Let T be the expiry of the option, and let 0 be the current
time. Fix a small time interval At = T'/n for some positive integer n. This method is a
way of defining a function f(&9(z,y,t) for (z,y) € RY and t =T — kAt for k=1,---,n

Let us first describe how to define f(At)(x,y,T — At): For each fixed value of y at
t =T — At, let o be a constant over the time interval [T'— At, T'| defined as o = /y. Next,
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for each constant o, define the following partial differential equation
2

At 2 2 2,2
[((7 Ju _t+ —0 9x2 + 5 7_ru—{—r:1:—+uy ” =0 (1.4)

for all (z,y) € R% and ¢t € [T —At, T]. Let f(At) (x,y,t) be the solution of the above partial
differential equation (1.4) with the given initial condition fc(,At)(:L', y,T)= f(z,y,T). Then
evaluate this f( Y at T — At for each y = o2, and set

FO (@, y, T — At) = f5D(2,y, T — Ab).

Note that the different values of y give rise to the different ¢’s. In order to define
fAO (z,y, T — At) for the different value of y, the different partial differential equation

L((,At) f = 0 should be used, hence the name “family.” Repeating this way, we can recur-
sively define f(A)(z,y, T — kAt) from fAY) (x4, T — (k — 1)At) for k =1,--- ,n. Let us
now formalize this procedure.

< Iterative PDE Family Method (in short, Iterative Problem) > (1.5)

Let f(xz,y,T) be the boundary condition, or equivalently, the contingent claim. Define
fAO(z,y, T — kAt) for (z,y) € R% and k =1,2,--- ,n, recursively as follows:

Step 1 (Initial Step) For each fixed y > 0 at t = T — At, let 0 = /y. Define

éAt)(:U, Y, 1) to be the solution of the initial value problem

{ LAY, — o
w(z,y,T) = f(z,y,T)

for (z,y) € R and ¢ € [T — At,T]. Then set
f(At) (!13, va - At) = fc(rAt)('Tu Y, T— At)
Step 2 (Recursive Step) Suppose (A8 (z,y, T — (k — 1)At) is already found.

Then for each fixed y > 0 at t = T — kAt, let 0 = /y. Define féAt) (x,y,t) to be
the solution of the problem

L(At) 0
U(flf,y,T - (k o 1)At) = f(At) (xvva - (k o I)At)
for (z,y) € R% and ¢ € [T — kAt, T — (k — 1)At]. Then set

f(At)('TuyuT - kAt) = f(SAt)(.TJ,y,T - kAt)
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Let f(A)(x,y,t) be the solution of the Iterative Problem (1.5). Then f(A%)(z, y, 1) is
initially defined only for t = T'— kAt for £k = 0,1,--- ,n. In fact, we will only need the
value of (A (z,y,t) for t = T — kAt, for k= 0,1,--- ,n except that we need to be able to

make sense out of %(m, y, T — kAt), in which case %(m, y, T — kAt) simply means
(an)
afgt (,y,T — kAt) where o = /y.

When one notes that the variable y is the square of the volatility constant ¢ in Equation
(1.1), our method looks very natural. There are many ways of fixing y as a constant in

Equation (1.3) to arrive at something like LY. But we only change y in the coefficient
of the second partial derivative with respect to = in Equation (1.3), while leaving other
y in the coefficient of the first partial derivative with respect to y in Equation (1.3). The

reason for this is that this replacement makes it easy to transform L,(,At) = (0 to the two
dimensional standard heat equation by suitable change of variables. Once the equation is
rewritten in the standard heat equation form, the solution can be explicitly written down
by integrating with the two dimensional heat kernel.

In Section 2, we justify our approach. Theorem 2.2, which forms the basis of our
work, shows that the function constructed by the Iterative Problem (1.5) converges to the
solution of Equation (1.3) with the same initial condition as At — 0. This fact says that
we can use f(A%) as an approximate value of the option price. Note that the numeric value
given in Hull and White [4] is also an approximate one, since they only use first few terms
in their power series expansion.

The rest of this paper is devoted to finding the hedging method. In order to use any
option valuation method in practice, one has to figure out a suitable hedging strategy.
Although Hull and White did not deal with this problem, we take up this issue in Section
4 and 5. Tn Section 4, we present a discrete time replicating strategy by using f(2*) defined
by the Iterative PDE family Method with a hedging interval At. And we prove that the
hedging error goes to zero as At — 0. This kind of discrete time hedging, in fact, is more
realistic in actual trading securities than the continuous one. In Section 5, we consider the
valuation and hedging problem with transaction costs from the option seller’s view-point.
Namely, as Leland [7] did, we calculate the premium associated with having to pay the
transaction costs. The arguments are similar to those in Section 4.

2. Convergence of the Solution of the Iterative PDE Family to the Solution
of the Hull-White Equation

In this section, we prove that f(AY)(x,y,t) defined by the Iterative Problem (1.5) con-
verges to the solution of the Hull-White equation as At — 0. If no confusion is possible,
we simply drop At from f(&%) and L(AY),

Let us first set up some notations, and quick review on some relevant facts in Hull and
White [4]. First, the asset price process S and its variance V = o2 are assumed to obey
the following stochastic differential equations

dS = ¢Sdt + o SdW,
AV = pVdt + £VdZ,
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where (Wy, Z;) is a standard two-dimensional Brownian motion and ¢, 4 and £ are con-
stants. They showed that the option price f is given by the following formula

f(x,02,1) /C’ h(V|e?)d (2.1)

where V is the mean variance over the life of the derivative security, h(V]o?) is the con-
ditional density function of V' given the variance at time ¢, and C'(V) is the Black-Scholes
price with the volatility V. They also proved that f(z,y,t) is the solution of the following
problem

{ 8f + 2ya: 3m2 £2y rf+r:1:af+uyaf =0 (2.9)

f(xvva) = (x_K)—i_'

First, we show that the term yz? 227{ for the solution of (2.2) is uniformly bounded. Since
PDE (2.2) is difficult to handle directly, we give a probabilistic proof. This is perhaps a
good place to clarify the nature of various estimates we derived in this paper. First of
all, one should note that I blows up as t — T. This is due to the discontinuity of the
first derivative of f(z,y, T) = (zx — K)* at x = K. This causes a trouble to most of the
uniform estimates. This fact is often overlooked in the literatures. One way of getting
around this difficulty is to tame the corner of the payoff function in a C°° manner in a
small neighborhood of the corner. Then all estimates would work as intended. Another
approach is to back track the time interval to [0, T — 4] instead of [0, T] and use the value
f (z,y, T — J) as the boundary condition. Then all derivative estimates and hedging error
estimates would work up to time T — §. But, since J is arbitrary, this slight modification
does not cause any serious trouble. Therefore, from now on, all estimates are obtained
assuming that the boundary condition meets this modification requirement.

Lemma 2.1. Let f(a:, y,t) be the price of European call option with stochastic volatility
that satisfies (2.2). Then there exists a constant C independent of x,y and t such that

2 0*f

a 2(.’1)y, )—C

Proof. From the formula (2.1),

o f C —.  — _
w5 L w0 = [ TIVly = o)

2 8 C’ (V)
is bounded by some constant M 1ndependent of x and V. ( In fact, M depends only on
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T —t, and it blows up t — T'. See the comment preceding Lemma 2.1.) Therefore the last
term is bounded above by

o'} y . o_tz y .
9

o0 o0 o2 2
gM{;%P[mﬁng( otlo}] +Zlm+ jrl Vg%ﬂaf]}.
The first term in the above parenthesis is less than
= 1, ) = [
Z - P[V > no}|o7] Z - tinzsza > noplo7].

Using the formula 02(w) = e(#=8"/D(T=)+62:-:(@)52 for 7 > t, and considering the distri-
bution of the running maximum of Brownian motion [6, p.96], we get

D Pl 2> glown = (g = IT =)
n=1

—22/2(T—t)dZ7

o0 1/ 2
/ logy'—|(4=§)(T—t) /2T —t

which converges. Finally, we can show the second term is also bounded by means of the
similar computation with the running minimum of Brownian motion. i

We now prove a theorem which is the foundation of our subsequent investigation, so
that f(z,y,t) is used as a proxy for f(z,y,t) in devising the hedging method.

Theorem 2.2. Let f(x,y,t) be the solution of (2.2) and f(z,y,t) be the solution of the
Iterative Problem (1.5). Then, at each t < T, f(z,y,t) converges to f(z,y,t) as At — 0.

Proof. Let o be a constant to be chosen appropriately for each iteration step below. Define
the following change of variables

u = gloga:/KnL (—gr%— %) (t—1T),

V2 ) V2 ¢

v=—Ilogy/o*+|——p+—=|(t-T),

g ey et
_(t_T)u

for z,y € Ry and t € [T — At, T]. Define g(u, v, s) for u,v € R s € [0, At] by

g(“? ,07 S) - e_’r(t_T) f0($7 y? t)'
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Since L, f, = 0 this change of variables formula makes g(u, v, s) satisfy the standard heat
9 99 _

equation, i.e., au2 + 3.7 — 52 = 0. From the equation
- 1 2f
Lo(fo— )= E(y—U )33 o2’

the difference e(u, v, s) = e "¢*=T)(f, — f)(z,y,t) is a solution of the following inhomoge-
neous heat equation

0% 0%  0Oe 1 0. 902 f
ooz T s M) =T g
e(u,v,0) = 0.

By the basic theorem of parabolic PDE, see for instance [3], we can represent
8 ]_ _ 2+ 2 /4
e(u,v,s) = e R/ Ry — 5 v — 29,5 — T)d21d2odT
r2 4T
To estimate e(u, v, s), we need to bound h(u,v,s). Note that 2% = el@v+B83) where o =

% >0and f=—p+ % Then, we can write y — 02 = y (1 — e_o“’_ﬁs) . Using Lemma
2.1,

1
|h(u,v,3)| = |§(y

< C|1 i 6—av—,85|

o)z 8$2|

for some constant C'. At t =T — At, the values of z,y and ¢ correspond to

glogx/K - (—Qr + i) At,

u = - \/5
_ V2 €

v =— <_?M+ ﬁ) At,

s = At.

Therefore, we have

At
(u,v,3)| </ / —e_(z1+z2)/47|h(u— 21,0 — 29,5 — T)| dz1dzedT

Arr

At
2
< C’/ / —6_22/4T e®2ePT _ 1| dzodr.
- 0 —oo VATT | | dz

When |z3| < § for some § > 0, the power series expansion of e**2 gives
le®2ePT — 1| <|ePT — 1| + e ePT 2o

<[P — 1] + 72|
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for some constant v > 0. Therefore, we have

At s \
|e(w,v,3)| < C’{/ / 4—6_22/4T|6a226ﬁT — 1| dzodr
0 —6 T

At poo 1 2 /4 At =6 1 2/4
+ ——e P2/ T2 (z dT+/ / ———e 2/ dzpdT
/0 /5 VAT ? 0 —oo VATT ’ }
At 5 At [ 1 2/4
<C / |e’T — 1| dr + 2’)// / ———e %2/ 2 dzodT
{ 0 0 o VarT
A A -9
+/ ! /OO ;6—(2:2—2047')2/47'6027' dzedT +/ t/ ;e_zg/‘” dZQdT}.
0 s VArnTt 0 —oo VATT

The second integral in the right-hand side is equal to

- ey dr
V7 Jo

and the rest of terms decay very fast when At gets small. Hence, we get ‘(f(7 — )z, 0%, T—

At)| < C(At)*/? for some new constant C' and small At. Since o = ,/y is arbitrary and
flz,y, T — At) = f g(z,y, T — At), we have

|(f - Ny, T - At)| < C(At)3/2,

To compare f with f at t = T — 2At in the next step, we introduce a function ¢
such that L, = 0 for (z,y,t) € Rt x Rt x [T — 2At, T — At] with o(z,y, T — At) =
f (x,y, T — At). Then, by the argument in the previous step, we can easily show that
(o — iz, y, T— 2At)| < C(At)3/2. To bound (f — ¢)(z,y, T — 2At), let us first fix o and
consider (fy, — ¢)(z,y,t) for t € [T —2At, T — At]. Then, f, — ¢ satisfies the homogeneous
equation L, (f, —¢) = 0 with the initial condition |(f, —¢)(z,y,T—At)| < C(At)*/2. This
implies ‘(fg —o)(z,y, T — 2At)‘ < Ce "At(At)3/2. Therefore, we have ‘f - (p‘(a:,y,T -
2At) < C(At)3/2, since o is arbitrary and f(z,y, T — 2At) = fyg(@,y, T — 2At). Thus

combining the bounds for f — ¢ and ¢ — f , we have
If = Fl(z,y, T — 2At) < 2C(AL)*/2

for some constant C. Repeating the same argument, therefore, f(z,y,t) converges to

f(z,y,t) as At — 0. Hence the proof is complete. B

3. Derivative Estimates for the Solution of the Iterative Problem

In this section, we obtain the derivative estimates of the solution f(x,y, t) of the Iterative
Problem (1.5). These derivative estimates are important ingredients in computing the
hedging error in Section 4 and 5. The advantage of using the operator L, is that this
operator can be transformed to the standard two dimensional heat operator via change of
variables.
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Lemma 3.1. Suppose that f is the solution of the Iterative Problem (1.5). Then yng%’;
(x,y,t) is uniformly bounded fort =T — kAt (k=1,---,n) by a constant C independent
of z,y and At.

Proof. Fix ¢ > 0 and let L, f, = 0. Applying the operator yz?> a =, we have

62
—LU - = 0.
e o3 I

Upon rewriting the above equation, we get a new equation

0
Yoy ="

0 1 02
My = =p + So%a” 5 ¢+ 52 ot T —u—r)¢+m—¢+(u &)y
where 1) = y2? %mf{ The operator M, is essentially the same type of operator as L, with
having a bit changed coefficients. Thus one can use the maximum principle argument for

1) via the change of variables as in Theorem 2.2.
For z,y € Ry and t € [T — At, T], define

u = glog:ﬂ/K—k (—£F+ ﬁ) (t—1T),

V2 p v2_ ¢
v = ?logy/a + <—?,u+ ﬁ) (t—T),
_(t_T)u

where 7 = r + p — &2 and @ = p — £2. With respect to these new variables, define a new
function g(u,v, s) by
9 fo

g(u,v,8) = e Ty Fo2 (@Y 1).
) . . F)
It is easy to see that g satisfies the standard heat Nequatlon au2 + a_g = 0. The
initial value of f, is f(z,y,T) where f(z,y,T) = f(z,y,T). Thus |ya:286$f2" (x,y,T)| =

|lyz? g; (z,9,T)] < C by Lemma 2.1, i.e., |g(u,v,0)] < C. Then the maximum principle

says that |g(u,v, At)| < C. Thus |yz? agmf{ (z,y, T — At)| < Ce "At. Since o is arbitrary
and f(x,y,T — At) = f g(z,y, T — At), letting o = ,/y leads to

2
|y g J;(a: y, T — At)| < Ce™ ™A,

Then we can repeat the above argument by introducing new change of variables (u,v, s)
for (z,y,t) and t € [T — 2At, T — At], where t — T above is replaced by t — (T — At).

Namely, for any o > 0, M, (yx? %mf;) =0 for t € [T — 2At, T — At] with the boundary
condition yz? 88?2" (x,y, T — At) = ymz%(x,y,T — At), which is shown to be bounded
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—TAt

above by Ce . Repeating the argument by the change of variables, we can conclude

that T
—72A
|y o (@, y, T —2At)| < Ce T8t
Therefore, we can easily see that

0? = (T—
|y$2W($,y,t)|§Ce (T=) n

Lemma 3.2. Suppose that f(:z: y,t) is the solution of the Iterative Problem (1.5). Then,
ateacht =T — kAt (k=1,---,n), |yay (z,y,t)| < C(At)z for some constant C' indepen-
dent of x,y and At.

Proof. By definition of the solution of the Iterative Problem (1.5),
o f(2,6%, T — kAt) — f(x,0%, T — kAt)

o)
yaz(az Y, T — kAt)|y=p2 = lim o

72—02 02 — g2
L o f5(2,0%, T — kAt) — f,(x, 0%, T — kAt)
=t 57 o? ’

where fz(z,y,t) and f,(x,y,t) are functions defined for z,y € Ry and t € [T — kAt, T —
(k — 1)At] satisfying the partial differential equations

af0+ A2 28 fa a fcr fcr 8fa

2 _ ZJo _
O'fO'_ 8t 2 x a.’L‘Q _'_ é_ rfo'_'_rma +M?/ 8y 07
0fy 1, _22an_ 0fs | 0fs _
Lofo= g T30 0 gu T38Y G o trag s tus s =0

with the same initial condition fz(z,y, T—(k—1)At) = f,(z,y, T—(k—1)At) = f(x,y, T—
(k — 1)At). Rewriting the second one, we have

o _0f 1 2o 22an_ O o _ Ligo _ 2y,20%1o
Lsfs = 5 +2 922 é rfo+ T + i 8y —2(0 o?)z? PR
Thus,

~ f&‘_fa _ _1 282f0
Ls (32 — 02> 2" ap2 (3-1)

holds for all z,y € Ry and t € [T — kEAt, T — (k — 1)At].
Let us first give a proof for the case k£ = 1. Let us use the change of variables given at
the beginning of the proof of Theorem 2.2. Note that a slight modification of the argument

in the proof of Lemma 3.1 shows that yal:2 o fe (z,y,t) is bounded. Thus at any z,y € Ry
and t € [T — At, T], we have

32 i 2 82 .

022 ey < | T y02 Tl

02 Y

< Ce_(ﬁv+(_”+§;)s). (3.2)
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Now we evaluate yg—£

at v,y = 02 and t = T — At. Using the same change of variables
formula over ¢t € [T — At,T] as in Theorem 2.2, we write @, 7, s as the values of u,v, s,
respectively at ¢ = T — At. Then, since f3(z,y,T) = f,(z,y,T), (3.1) and (3.2) imply

that

At
| 2fU fU (CL‘ 0_ T At |< (21+z2)/47
52— o2 R2 dnr’

— o2

1 0% f,
—olp? L2 f (W — 21,0 — 29,5 — T)dz1dzodT

2 0x?

ot 2/ar — 5 (T—2) —(—pt+5)(At—7)
= C/ / L s 5 ) (i )BT g
o 0 —oo VATT 2

At oo 1 5
= C’/ / \/?6_22/4760‘2265T dzodT
0 — 00 T

where o = % and = —pu + % On the other hand, since
f?r\(xa&zvt) - fa(,l‘,O'z,t) o fg(l‘,a'z,t) - f?r\(xao-zvt) fcr(x o? t) fg(.’,l’),0'2,t)

52 _ g2 52 _ g2 52 _ g2 ’

letting 52 — o2 gives

0 1 2, 2 0fs
y—f(a:, 02, T — At) =e A / —e_(21+22)/4Tyi(ﬂ — 21,0 — 29,0)dz1dz9
8y R 6

2 AT
+32li_r>r(17202f‘; (Jj‘;( o, T — At). (3.3)

Using the fact that % =0at ¢t =T for all x and y, the first term in the right hand side
equals zero and we can also easily show that the last term of the above equation is less
than C(At)? for some constant C' and small At. Therefore, choosing o = = /Y, we have
that

0
oL (9,7~ A0 < O} (34)
)
for all z,y € R,.
For the interval [T — kAt,T — (k — 1)At], we can complete the proof by the same
argument except that yaaf? which is in the first integral of (3.3) is not zero, but bounded
by C(At)? due to the previous step at time t = T — (k — 1)At. B

Now, we present the mixed second derivative estimate which is needed in the last section.

Lemma 3.3. Suppose that f(z,y,t) is the solution of the Iterative Problem (1.5). Then,
at eacht = T — kAt (k = 1,---,n), |$y8w8y (z,y,t)] < C(At)? for some constant C

independent of x,y and At.

Proof. Note that since z-2 (1:2%) = 3:28‘9—;(:1:%), the operator -2 commutes with the

operator L,. Thus, x%f" satisfies the equation

fe\ _
Lg< &U)_o



12 H.I. CHo1 aNnD H. Ku

We claim that yz3 %P)mfg’ is uniformly bounded for t = T — kAt (k= 1,--- ,n) by a constant

o
dx3

for all z,y and t as in Lemma 2.1. Thus the argument in Lemma 3.2 leading to (3.4) can

be used to complete the proof. B

independent of x,y and At. This can be obtained from the fact that ymSﬁ is bounded

4. Discrete Time Replicating Strategy

In this section, we consider the hedging problem, which is one of the most important
issues in trading derivative securities. In the ideal Black-Scholes model, the delta hedging
strategy replicates a call option perfectly by continuous trading. However, in practice, it
is impossible to trade continuously; one can only devise a discrete time hedging strategy.
In this case, the best one can hope for is to have the hedging error reduce to reasonably
small.

Another advantage of using f(x,y,t) instead of f(z,y,t) is that the standard delta
hedging at a discrete time interval as in Leland [7] is naturally possible. The main result
in this section is Theorem 4.1 which says that the hedging error using f(z,y,t) decreases
to zero as the hedging interval At goes to zero. In what follows, by abuse of language, we
call f(z,y,t) which is the solution of the Iterative Problem (1.5) the price of a call option
when the stock price is  and the variance is y at time t.

Over the kth time interval [T — kAt, T — (k — 1)At], an asset price process S and its
variance V satisfy the following discrete equation

AS

% = pAt + E2V AL

where w, z are normally distributed random variables with mean zero and variance one,
and o, denotes the value of v/V at time t = T —kAt. If the interval [T —kAt, T — (k—1)At]
and the time T — kAt are understood in the context, we drop the subscript k from oy.
Consider a fixed portfolio P consisting of N shares of stock and B dollars of the risk free
security over the interval At. We revise the portfolio at the beginning of each interval. The
length of the interval At would be the hedging interval. We define a replicating strategy
as the delta hedging given by

_of
N= 5
_ of

In the Black-Scholes world, this delta hedging makes a riskless position. But for the discrete
time hedging in the stochastic volatility model, we cannot eliminate all the risk. Therefore,
the hedging strategy always generates errors and we need to measure the difference AH
between the changes in value of the replicating portfolio and of the call option over the
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period [T — kAt, T — (k — 1)At]. Here, we compute the hedging error AH inside the small
time interval of length At where At is the revision period. Then, we consider the total sum
of the expected hedging errors and the variances of the hedging error over [0, T]. Finally,
we prove that the total hedging error converges to zero almost surely using the derivative
estimates which are proved in Section 3 and the law of large numbers.

Theorem 4.1. If we follow this replicating strategy N = %, B=f- x% where f is
the solution of the Iterative Problem (1.5), then we can reduce the hedging error to zero

almost surely by letting the hedging interval tend to zero.

Proof. Over the kth interval [T —kAt, T — (k—1)At], the return of the replicating portfolio
P will be

AP = NAz + BrAt + O(At?)

ng + (f - a—ix)rAt+O(At ).

Here the term O(At?) comes from the continuous compounding of interest. Note that the
expression O(At) hereafter has the following meaning; the random variable X is said to
be O(At) if limsupa,_, |ng)| is bounded by some constant C' independent of A¢. On the
other hand,

Af =f(z+ Az, y+ Ay, t + At) — f(x,y,t)

af of f O*f . 10°f 2
=9 g, T Hiﬁ(m) + 5 g2 (AY)
92 f

+ 0xdy

(Az)(Ay) + O(AE/?)

by Taylor’s theorem. From (4.1), Az = 2(¢pAt + opwV/At) and Ay = y(pAt + 2/ At).
Thus the z-derivative of f in the above is accompanied with the multiplication by =z,
similarly for y-derivatives, and higher mixed order derivatives are also multiplied with
suitable powers of x or y. Then, considering the hedging error AH over the same interval,
we get

AH =AP - Af
- of of of 10°f , 10°f 2
= g A T Gy A T i A T g2 (B~ g g, (AY)
B NN )+O<At3/2)
0x0y 4 .
Since f satisfies

O | 10,000 Lo 0f of  af
8t+2 92 + 5 317 rf+m6x+uyay—0
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where o is the value of /y at time ¢ = T' — kAt, substituting for (f — x%)rAt gives

i are Y aesdorPa Lo Pl 9, O

AH = Ty Go A S A Sotat S At Sy A ayA 5 A
P NT I >
—5@< ) _iﬁ(Ay) —axay@x)@y)*o(m )

= —£y \/_+ N %( 2At — o?w? At) + 1 20° f(§ At — €222 At)

2

B f 3/2
xyaxayaﬁszt +0 (At ) . (4.2)

At this moment, we need to mention some subtle difference on g—i between in (4.2) and

in Theorem 3.2. Since the portfolio is rebalanced at the beginning of the interval [T —
kAt, T — (k — 1)At] according to the values of x and y at that time, the derivatives for f
with respect to y should be considered as the ones for f, where o is the fixed value of |/y

at time t = T — kAt. But the fact yg—i(x, y, T — (k—1)At) is C(At)2 obtained in Theorem
3.2 simply implies that yaf" (z,y, T — EAL) is C’(At)%. Taking expectation, we have

E(AH) =0 (At3/2) .

Therefore, we can conclude the expected total hedging error when the time to maturity is

T/ At
> AH | =0(AE?)

which tends to zero as At — 0. Since yg—g is C(At)z as mentioned above, we obtain

E(AH?) = O(A?).

To apply Theorem 4.2 [2, p.243], set X} = AAI?“, n = Alt and by, = k. Then, ignoring the

term O (At*/?), E(Xy|Fx_1)at) = 0 and EX}? < C for some constant C. Since

EX2
Z CZkQ <.

k=1

it follows that

X AH 1 —
Zk 1 k:—z k:TZAHkHO a.s.
k=1

which means the total hedging error over the period [0, 7] will almost surely be zero as At
goes to zero. i
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Theorem 4.2 (The Law of Large Numbers). Let X1, X, -- be a sequence of random

variables such that Xy € Fy and E(Xg|Fx_1) = 0 for all k, where F; C Fy C --- iS an

EX}
b

oo
increasing sequence of o-algebras of events. If by < by < -+ — oo and ) < 00, then

k=1

X1+ -+ Xy as,
—

0.
bn

5. Replicating Strategy under Transaction Costs

In this section, we include transaction costs in the model. If transaction costs are taken
into consideration in the stochastic volatility model, it is clear that the contingent claim
cannot be replicated perfectly. Therefore, the intrinsic hedging error would occur for any
trading strategy, and the valuation and hedging problem becomes more complicated.

We propose a replicating strategy which is similar in Section 4 by just modifying the
variance at each revision time, and show that the hedging error tends to zero almost surely
as the hedging interval goes to zero. Therefore, the hedging method using our new iterative
PDE family also solves the valuation and hedging problem in the stochastic volatility model
with transaction costs.

Let v represent the rate of transaction costs and define

2 2 1+

oV At

Let f. be the solution of the Iterative Problem (1.5) with o replaced by o,. To clarify the
argument in this section, we need to write here the definition of f, as follows.

< Iterative Problem > (5.1)

Let f(z,y,T) be the boundary condition, or equivalently, the contingent claim. Define
fo(z,y, T — kAt) for (z,y) € R and k = 1,2, --- , n, recursively as follows:

Step 1 (Initial Step) For each fixed y > 0, let 0 = \/y. Define f, = (z,y,t) to
be the solution of the initial value problem

__ Ou 1 2, 28% 1¢2,28%u ou ou __
{ LU*U—E—FEO’*.T W+§£yw—ru+r$%+uya—y—0

w(z,y,T) = f(z,y,T)
for (z,y) € R and ¢ € [T — At, T]. Then set

f*(xvva_ At) - fa*(l';y;T_ At)
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Step 2 (Recursive Step) Suppose f.(z,y,T — (k—1)At) is already found. Then
for each fixed y > 0, let 0 = /y. Define f, (x,y,t) to be the solution of the
problem

2 2
Lyu=244 1522204 4 %52112372‘ —ru+rzdt + ,uyg—z =0
U(.ﬁl?,y,T— (k o I)At) = f*(xvva_ (k o I)At)

for (z,y) € R% and ¢ € [T — kAt, T — (k — 1)At]. Then set

fulz,y, T — KAL) = fo, (z,y, T — EAL).

Let us first estimate the derivatives for f, by the slight modification of the arguments
in Section 3. Here, we simply skip the same computation procedure as in Section 3 and
give a little description in the proof. Recall the meaning of O(At) given in the middle of
the proof of Theorem 4.1.

Lemma 5.1. Suppose that f.(z,y,t) is the solution of the Iterative Problem (5.1). Then
222L s O(AL3) fort =T — kAL (k=1,2,--- ,n).

dx2

oVAtL
to the both sides of this equation, we get

0% f,
L,, <U*2a:2 / *) =0.

Proof. At each t =T — kAL, fix 0 = /y and put 0,2 =02 [1 + \/;u} . Then, L,, f,, =0.

o 2
Applying the operator o> 1;2%

0x?

2
Thus, we can derive using the maximum principle that o,222273= is O) fort =T —

v
kAt (k = 1,2,---,n) from the boundary condition as in Lemma 3.1. Hence, 0,2 is
2
O(At~7) implies that 22 aamf; is O(Atz). i

Lemma 5.2. If f,(z,y,t) is the solution of the Iterative Problem (5.1), then y%—];‘ and
a:yg;g; are O(At2).

Proof. Let us introduce 3/, a new variable corresponding to 0,2 when y = o2, defined by

\/EV
/ T

=y |1+
Yy =y i

Using the fact that U*2x2aa—;fg* is O(1) which is obtained in Lemma 5.1, we can estimate

2J5. = Jo. (z,0%, T — kAt)

0-* 0-*
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in the same way as in Lemma 3.2 to derive y’ of By is O(At2) However, it is easily checked

that
O f« dy'\ Of« , O fx
Yy =\y— <y
8y ay/ 8y’
due to Z’JU(% =y |1+ \/\/y% — 2\/\/?%] < vy/. Therefore, we can conclude yaf* O(At%)_ ]

Now, we show that the replicating strategy {IN = %, B=f,— a:%{;} will yield payoff
of a call option including transaction costs almost surely as At — 0. Over the interval
[(k — 1)At, kAt], the return, AP, of this portfolio consisting of N shares of stocks and B

dollars of the risk free security and the change in value, A f*, of a call option are computed

as in the previous section. Here, note that 2Lt i O(AtZ) In fact, since x5 f > includes

dxdt
no y-derivative, this estimate can be inherited from the fact .I'g g; O(At7) Where Cis
the Black-Scholes price with the volatility o,. Also, the number of assets bought or sold is
0 Of.
AN = — A A At) —
B (& T ALY+ Ay, b+ At) — 2 (2. 4)
azf* 2f zf* 3/2
= a2 (z,y,t) Az + 9z y (z,y,t)Ay + e, At+O<At )
and the transaction costs in this interval would be
92
v(a+ Aa)|AN| = v(e + Ax) | 53 e A+ 0 (At3/2>
0%f. | Az
_ 20 x| BT 3/2
vx 92 + 0 (At ) .

Then, by easy calculation the hedging error inclusive of transaction costs is

AH =AP — Af, — transaction costs

2
= — gyaf* 2V AL + %xzaa f; <U*2At — c2wiAt — v
x

Az

B

T

1 62f* 2 2.2 0% [ 3/9
+ g e (€A1 = EPA) — Fot (M) (Ay) + O (At )
120 [ 2 -
= 2V A + 2% a2 |7 At + | —voV At — o w At — vo|w|V At
™
2 2
yza 2* (€2A¢1 — €222 A8) — ‘Tyg e 05szt—f—O<At3/2).

Taking expectation, we have F(AH) = O (AtS/ ?) and the expected total hedging error
E( Z/At AHk) = O (At'/?) which tends to zero as At — 0. Note that a:zaaf; is
O (At%), which implies F(AH?) = O (AtQ) . Therefore, Theorem 4.2 implies the total

hedging error over [0, T] tends to zero almost surely. Hence, we complete the proof of the
following Theorem.
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Theorem 5.3. If we follow the replicating strategy {68];;*, fs — x%{;} where f, is the
solution of the Iterative Problem (5.1), then we can reduce the hedging error including

transaction costs to zero almost surely as At — 0.
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