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ABSTRACT
This article provides a simple model for pricing and hedging options in the presence of jumps
and liquidity costs. In the article, liquidity risk is modelled via a stochastic supply curve function
and a jump-diffusion process is approximated by a Markov chain. Local risk minimization
incorporating liquidity risk is proposed to price and hedge European options in this discrete-
time model. Moreover, an example is provided to implement the modified risk minimization
method and to demonstrate the performance of hedging strategies.
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I. Introduction

Liquidity risk is the risk from the timing and size of
a trade, that is, extra cost due to the absence of a
counter party. A given security or asset cannot be
traded quickly enough to meet the short-term
financial demands of the holder under liquidity
risk which is considered as a most important risk
these days in addition to market risk and credit
risk, especially since the financial crisis in 2008. In
a market with liquidity risk, investors cannot buy
or sell large quantities of security at a given market
price, and there must be extra cost associated with
buying or selling a given security. The extra cost is
regarded as liquidity cost and it typically depends
on both the securities market price and trading
volume (or trading speed). The pricing and hedging
problem of derivatives under liquidity risk has
become an important and difficult question in
recent years.

Cetin, Jarrow, and Protter (2004) proposed a rig-
orous model incorporating liquidity risk into the
arbitrage pricing theory. Based on this model,
Cetin, Soner, and Touzi (2010) used strategies with
minimal super-replication cost inclusive of liquidity
premium to price contingent claims in continuous
time setting. Ku, Lee, and Zhu (2012) derived a
partial differential equation which provides dis-
crete-time delta hedging strategies whose expected

hedging errors approach zero almost surely as the
length of the revision interval goes to zero (see also
Sorokin and Ku, 2016). In these papers, the stock
price is assumed to follow a geometric Brownian
motion. However, evidence of jumps in the stock
price has been provided by empirical studies of
stock return (see, for example, Jorion 1988; Bates
2000). When there are jumps in the underlying
asset, liquidity risk becomes a critical problem.
Recently, Lehman Brother’s collapse gave us a con-
crete example of the dramatic consequence of com-
bining jump risk and liquidity risk.

In this article, we investigate option valuation
with liquidity risk in a jump-diffusion model.
Jumps in stock price bring jump risk, and it is
known that liquidity risk and jump risk are not
independent, but are correlated. Jump risk has been
an important topic in the pricing and hedging of
contingent claims since Merton (1976). In a financial
crisis, it is common that an underlying asset price
exhibits jumps, leading investors in the market to
change their positions quickly on the underlying
asset to hedge derivatives, which causes a significant
liquidity problem. The severity of combining jumps
and liquidity risk occurs in these situations.
Therefore, the pricing and hedging problem in a
jump-diffusion model under liquidity costs is an
important practical question.
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When the underlying asset follows a jump-diffu-
sion process, a market is incomplete and a contin-
gent claim cannot be replicated with the underlying.
There are some approaches to price derivatives in an
incomplete market, for instance, super-hedging,
mean-variance hedging and local risk minimization
approach (see, for example, Lim 2005; Follmer and
Schweizer 1991; Coleman, Li, and Patron 2007).
Local risk minimization is an easily applicable
method to price options in incomplete markets.
One can price options by the local risk minimization
method for a jump-diffusion model without liquidity
risk in the continuous time setting, which gives us a
partial differential equation to characterize the initial
hedging cost. It is natural to ask whether one can
derive a modified partial differential equation to
describe the local risk minimization hedging cost of
options in a market with liquidity risk. It does not
seem possible to derive such a partial differential
equation due to the complexity introduced by liquid-
ity risk. Thus, we address and investigate this issue
in discrete time.

A jump-diffusion model has been approximated
by a discrete-time process in the literature (see, for
instance, Amin 1993). In this article, we apply local
risk minimization to price options with liquidity risk
for a Markov chain converging in distribution to a
continuous jump-diffusion process. Therefore, the
option price obtained from the discrete-time model
approaches the option price in the jump-diffusion
model as the time step goes to zero. Hence, the
method proposed in this article provides a valuation
and hedging model for options in the presence of
jumps and liquidity costs.

The article is organized as follows. Section II is
devoted to introduce a discrete-time Markov process
which approximates the jump diffusion process, and
shows the proof of the convergence. Section III dis-
cusses the local risk minimization method including
liquidity risk in our discrete-time model. Section IV
presents some numerical results and Section V con-
cludes the article.

II. Markov chain approximation of a jump-
diffusion model

In this section, we present the local risk minimiza-
tion method for a jump-diffusion process without
liquidity risk. We consider a financial market which

consists of a risk-free asset and a risky asset. The
money market account Bt with the risk-free rate r is
given by

dBt ¼ rBt dt; t 2 ½0;T�
Without loss of generality, it is assumed that

r ¼ 0. The asset price is defined on a probability
space ðΩ;F ;PÞ with the filtration Ft : t � 0f g gen-
erated by a one-dimensional Brownian motion Wt

and a Poisson process Nt with intensity λ. The stock
price St is modelled by a jump-diffusion process that
follows the stochastic differential equation

dSt ¼ μStdt þ σStdWt þ ðVi � 1ÞStdNt; t 2 ½0;T�
(1)

where σ is the volatility, μ is the drift term of the
stock and Vi is the jump size where

P Vi ¼ eqjf g ¼ pj; 1 � j � m

and

p1 þ p1 þ . . .þ pm ¼ 1

The solution for the stochastic differential
Equation 1 is written as

St ¼ S0 exp ðμ� 1
2
σ2Þt þ σWt

� �YNðtÞ

i¼1

Vi

It is well known that a geometric Brownian
motion is approximated by a binomial model. If
the jump size takes finitely many possible values, a
jump-diffusion process can be approximated by a
discrete-time process. In the following, we present
a Markov chain approximation of the jump-diffu-
sion model.

We approximate the jump-diffusion process
(Equation 1) in the following way. Let NðtÞ be a
Poisson process with intensity λ. For any t 2 ½0;T�,
we have N stages over time horizon ½0; t�, denoted by
0 ¼ t0 < t1 < � � � < tN ¼ t with Δt ¼ t

N . Given Sk, the
stock price at time tk, and time step Δt, there are
mþ 2 possible values for Skþ 1 at time kþ 1:

Skþ 1 ¼

Skeðμ�
1
2σ

2ÞΔtþσ
ffiffiffiffi
Δt

p
; if Sk goes up

Skeðμ�
1
2σ

2ÞΔt�σ
ffiffiffiffi
Δt

p
; if Sk goes down

eq1Sk; if Sk jumps to eq1Sk
. . .

eqmSk; if Sk jumps to eqmSk

0
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The relationship between Skþ1 and Sk is
Skþ1 ¼ Sk�kþ1, where

�kþ1 ¼

eðμ�
1
2σ

2ÞΔtþσ
ffiffiffiffi
Δt

p
; with probability 1�λΔt

2

eðμ�
1
2σ

2ÞΔt�σ
ffiffiffiffi
Δt

p
; with probability 1�λΔt

2

eq1 ; with probability p1λΔt
. . .
eqm ; with probability pmλΔt

0
BBBBBBBB@

Theorem 2.1. As N ! 1, the distribution of
ðSkÞk¼0;1;:::;N converges to the distribution of

St ¼ S0 exp ðμ� 1
2
σ2Þt þ σWðtÞ

� �YNðtÞ

i¼1

Vi

where P Vi ¼ eqjf g ¼ pj for 1 � i � NðtÞ; 1 � j � m
and p1 þ p2 þ :::þ pm ¼ 1.

Proof. Notice that Skþ1 ¼ Sk�kþ1, then SN can be
written as

SN ¼ S0�1�2 . . . �N

Denoting ηk ¼ lnð�kÞ and XN ¼ ln SN
S0

� �
, we shall

have

SN ¼ S0e
η1þη2þ...þηN

For this discrete-time model, the log return XN

has the form of

XN ¼ η1 þ η2 þ . . .þ ηN

where η1; η2; :::ηN are independent and identically
distributed.

For the continuous time jump-diffusion model,
the log return Xt ¼ ln St

S0

� �
is expressed as

Xt ¼ μ� 1
2
σ2

� �
t þ σWt þ

XNðtÞ

i¼1

Ui

where Ui ¼ lnðViÞ. The moment-generating func-
tion of Xt is

GXtðθÞ ¼ E eθXt
	 


¼ E e
θ½ðμ�1

2σ
2ÞtþσWtþ

PNðtÞ

i¼1

Ui�
2
64

3
75

¼ eθðμ�
1
2σ

2ÞtE eθσWt
	 


E e
θ
PNðtÞ

i¼1

Ui

2
64

3
75

By the iterated conditional expectation, we have

E e
θ
PNðtÞ

i¼1

Ui

2
64

3
75 ¼ E E e

θ
PNðtÞ
i¼1

Ui jNðtÞ

2
64

3
75

8><
>:

9>=
>;

¼ E p1e
q1θ þ p2e

q2θ þ :::þ pme
qmθ

� �NðtÞh i

¼
X1
k¼0

p1e
q1θ þ p2e

q2θ þ :::þ pme
qmθ

� �k ðλtÞke�λt

k!

¼ exp λ p1e
q1θ þ p2e

q2θ þ :::þ pme
qmθ � 1

� �
t


 �
(2)

Also, we know

E eθσWt
	 
 ¼ exp

1
2
σ2θ2t

� �
(3)

Together with Equations 2 and 3, the moment-gen-
erating function GXtðθÞ is expressed as

GXtðθÞ ¼ exp θ μ� 1
2
σ2

� �
t þ 1

2
σ2θ2t

�

þ λ p1e
q1θ þ p2e

q2θ þ . . .þ pme
qmθ � 1

� �
tg

Then, GXNðθÞ ¼ E½eθXN � is written as

GXN ðθÞ

¼ Gη1ðθÞ
	 
N

¼
(
1� λΔt

2
eθ½ðμ�

1
2σ

2ÞΔtþσ
ffiffiffiffi
Δt

p � þ 1� λΔt
2

eθ½ðμ�
1
2σ

2ÞΔt�σ
ffiffiffiffi
Δt

p �

þ p1λΔte
θq1 þ . . .þ pmλΔte

θqm

)N

¼
�
1� λΔt

2

�
1þ θðμ� 1

2
σ2ÞΔt

þ σ
ffiffiffiffiffi
Δt

p
θþ 1

2
σ2Δtθ2 þ OðΔtÞ3=2

�

þ1� λΔt
2

�
1þ θðμ� 1

2
σ2ÞΔt�σ

ffiffiffiffiffi
Δt

p
θþ 1

2
σ2Δtθ2

þ OðΔtÞ3=2
�
þ p1λΔte

θq1 þ . . .þ pmλΔte
θqm

�N

¼ 1þ θðμ� 1
2
σ2ÞΔt þ 1

2
σ2θ2Δt þ λðp1eθq1

�

þ p2e
θq2 þ . . . pme

θqm � 1ÞΔt þ OðΔtÞ3=2
�N
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¼
(
1þ

�
θðμ� 1

2
σ2Þ þ 1

2
σ2θ2 þ λðp1eq1θ þ p2e

q2θ

þ . . .þ pme
qmθ � 1Þ

�
Δtþ OðΔtÞ3=2

)N

Since N ¼ t
Δt , as N ! 1 we have

lim
N!1

1þ θðμ� 1
2
σ2Þ þ 1

2
σ2θ2 þ λðp1eq1θ

��

þ p2e
q2θ þ . . .þ pme

qmθ � 1Þ
�
ΔtþOðΔtÞ3=2

�N

¼ lim
Δt!0

1þ θðμ� 1
2
σ2Þ þ 1

2
σ2θ2 þ λðp1eq1θ

��

þ p2e
q2θ þ . . .þ pme

qmθ � 1Þ
�
Δtþ OðΔtÞ3=2g t

Δt

¼ exp θðμ� 1
2
σ2Þt þ 1

2
σ2θ2t þ λðp1eq1θ

�

þp2e
q2θ þ . . .þ pme

qmθ � 1Þt
�

which is exactly the generating function of Xt. We
proved the moment-generating function of XN con-
verges to that of Xt. Therefore, SN ¼ S0eXN converges
to St ¼ S0eXt in distribution as desired.

III. Local risk minimization under liquidity risk

In this section, liquidity risk is described by a sto-
chastic supply curve. A supply curve function
Sðt; z;ωÞ represents the stock price per share that
the investor pays/receives for an order size of z 2 R
at time t. A positive z represents a purchase order
and a negative z represents a sale order of stock. The
supply curve function is determined by the market
structure; therefore, a single investor’s past actions,
wealth and risk attitude have no impact on the
supply curve. It is generally believed that the supply
curve satisfies the following assumptions:

• Sðt; z;ωÞ is F t measurable and nonnegative.
• Sðt; z;ωÞ is nondecreasing in z.
• Sðt; z;ωÞ is continuous in z.
From now on, we write this stochastic supply

curve function Sðt; z;ωÞ as StðzÞ in order to simplify
the notation.

Due to the liquidity risk, investors face the fact of
selling at a lower price than the market-quoted price
and buying at a higher price than the market-quoted
price. Therefore, liquidity risk adds extra cost for
trading which is regarded as liquidity cost. We
assume the supply curve function is in the separable
form as in Ku, Lee, and Zhu (2012), which is given by

StðzÞ ¼ f ðzÞSt
where f ð�Þ is a positive, continuous and nondecreas-
ing function with f ð0Þ ¼ 1, and St is the quoted
price (mid-price) at time t.

Based on theoretical developments in Section II, we
use a discrete-time approximation for the asset price,
and address the pricing and hedging problem for dis-
crete-time process. When the time interval Δtð¼ t

NÞ
goes to zero, the option price obtained from the dis-
crete-time model converges to the option price includ-
ing liquidity costs in the jump-diffusion model.

Assume we are going to hedge a European call
option with maturity tN and pay-off HN ¼
ðSN � KÞþ which is F tN measurable. A trading strat-
egy is given by two stochastic processes ðxkÞk¼0;1;:::;N

and ðykÞk¼0;1;:::;N , where xk stands for the number of

shares of the asset Sk held and yk is the amount in
the money market account at time tk. Both xk and yk
are F tk measurable for 0 � k � N. The portfolio is a
combination of the stock and money market account
for the trading strategy. The value of portfolio (the
marked-to market value) at time tk is given by

Vk ¼ xkSk þ yk

For k ¼ 1; 2; :::;N, the liquidity cost incurred from t1
to tk is defined by

Lk ¼
Xk�1

i¼0

f ðxiþ1 � xiÞ � 1½ �Siþ1ðxiþ1 � xiÞ

and the accumulated gain Gk up to time tk is given by

Gk ¼
Xk�1

i¼0

xiðSiþ1 � SiÞ

�
Xk�1

i¼0

f ðxiþ1 � xiÞ � 1½ �Siþ1ðxiþ1 � xiÞ

and G0 ¼ 0. Indeed, the accumulated gain in the
market with liquidity costs equals the accumulated
gain from the changes in stock price minus the
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accumulated liquidity costs. The accumulated cost at
time tk is defined by

Ck ¼ Vk � Gk

A strategy is said to be self-financing if the accu-
mulated cost process ðCkÞk¼0;1;:::;N is constant over
time. This implies

Ckþ1 � Ck ¼ ðVkþ1 � Gkþ1Þ � ðVk � GkÞ

¼ xkþ1Skþ1 þ ykþ1 þ f ðxiþ1 � xiÞ � 1½ �
Siþ1ðxiþ1 � xiÞ � xkSkþ1 � yk ¼ 0

Note that the value of a self-financing portfolio at
time tk isVk ¼ V0 þ Gk for 0 � k � N. If the market is
complete and perfect, there exists a self-financing strat-
egy that satisfies VN ¼ HN . But if the market is incom-
plete, a contingent claim can be nonattainable and there
may be no hedging strategy under which the cost pro-
cess ðCkÞk¼1;2;:::;N is constant. A hedging strategy needs

to be chosen based on some optimality criteria.
Now, we apply the local risk minimization hed-

ging method to hedge options in the discrete-time
model. First, we let VN ¼ HN . Local risk minimiza-
tion requires the cost process ðCkÞk¼1;2;:::;N to be a

martingale and the variance of incremental cost pro-
cess ðCkþ1 � CkÞk¼0;1;:::;N�1 to be minimal. Therefore,

the traditional criterion for local risk minimization is

MinimizeVar ½ðCkþ1 � CkjF k�

Subject to E½Ckþ1 � CkjF k� ¼ 0

which is equivalent to minimize

E½ðCkþ1 � CkÞ2jF k�
In our discrete-time model, given the pay-off HN

at maturity of the option, we set
VN ¼ xNSN þ yN ¼ HN . By the local risk minimi-
zation method, the trading strategy ðx�N�1; y

�
N�1Þ at

tN�1 is calculated by

ðx�N�1; y
�
N�1Þ ¼ arg min

xN�1;yN�1

E½ðHN � xN�1SN � yN�1Þ2jFN�1�

For 0 � k < N � 1, given the values for
ðx�kþ1; y

�
kþ1Þ, we need to minimize

E½ðCkþ1 � CkÞ2jF k� to determine ðx�k; y�kÞ. It can be
done by minimizing the following optimization
problem:

ðx�k; y�kÞ ¼ argmin
xk;yk

E½ðx�kþ1Skþ1 þ y�kþ1

þ f ðx�kþ1 � xkÞ � 1
	 


Skþ1ðx�kþ1 � xkÞ
� xkSkþ1 � ykÞ2jF k�

By backward induction, we have ðx�N�1; y
�
N�1Þ,

ðx�N�2; y
�
N�2Þ. . .,ðx�1; y�1Þ, and ðx�0; y�0Þ, recursively.

Then the initial option price at time t0 is determined
by the value x�0S0 þ y�0, and also ðx�N�1; y

�
N�1Þ,

ðx�N�2; y
�
N�2Þ. . .,ðx�1; y�1Þ, ðx�0; y�0Þ provide the local

risk minimization hedging strategies. As N goes to
infinity, the discrete-time model converges to the
jump-diffusion model. The option price and hedging
strategy obtained from the discrete-time model give
a good approximation to the corresponding price
and hedging strategy in the jump-diffusion model.

It is noted that the discrete model presented in
Sections II and III can be viewed as a generalization
to the classical binomial model. When the liquidity
parameter is 0 (the supply curve function is flat every-
where), our approach coincides with the discrete-time
model of a jump-diffusion process with local risk mini-
mization hedging. Also, when the jump parameter λ ¼
0 (there are no jumps), our model is reduced to the
binomial model with liquidity costs, which is a dis-
crete-time version of a continuous perfect replication
model. It is obvious that our model reduces to the
classical binomial model when both parameters are 0.

IV. Numerical results

In this section, we present an example for the imple-
mentation of the model and show a comparison of
numerical experiments on three hedging methods:
delta hedging, conventional local risk minimization
without liquidity risk and modified local risk mini-
mization (including liquidity costs). First we
describe a Markov chain that approximates a jump-
diffusion process.

The jump-diffusion model we are going to
approximate is given by

dSt ¼ μStdt þ σStdWt þ ðVi � 1ÞStdNt; t 2 ½0;T�
and Nt is a Poisson process with intensity λ1 þ λ2.
For simplicity, we assume that Vi can take two
possible values such that

P Vi ¼ eq1f g ¼ λ1
λ1 þ λ2

and P Vi ¼ eq2f g ¼ λ2
λ1 þ λ2
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The discrete-time model used to approximate the
jump-diffusion model has N periods with time step
Δt ¼ T

N . Suppose the stock price at period kð0 � k �
N � 1Þ is Sk in the discrete-time model, then the
stock price at period kþ 1 has four scenarios; it
goes up, goes down, jumps down or jumps up. The
probability distribution for Skþ1 is written as

Skþ1 ¼
Skð1þ μΔtþ σ

ffiffiffiffiffi
Δt

p Þ; with probability 1�λ1Δt�λ2Δt
2

Skð1þ μΔt� σ
ffiffiffiffiffi
Δt

p Þ; with probability 1�λ1Δt�λ2Δt
2

eq1Sk; with probabilityλ1Δt
eq2Sk; with probabilityλ2Δt

0
BB@

As the time step Δt ! 0, this discrete-time
Markov process converges to the continuous jump-
diffusion process. We use the values q1 ¼ ln 0:9 and
q2 ¼ ln 1:12 in the computation. We also assume
that the supply curve function f ð�Þ is linear and has
the following form:

SkðzÞ ¼ ð1þ αzÞSk
and the hedging error is computed by

xNSN þ yN � HN

Table 1 presents the European call option price
with different strikes and volatilities. The parameter
values in this computation are S0 ¼ 100, T ¼ 1,
μ ¼ 0:2, α ¼ 0:1, λ1 ¼ 1, λ2 ¼ 1 and N ¼ 50.
Table 2 presents European call option prices with
varying λ1 and λ2 when σ ¼ 0:2 and K ¼ 100.

Table 3 shows the analysis on the hedging error for a
European call option with σ ¼ 0:2, K ¼ 100, T ¼ 1
and varying λ1 and λ2. Here, Delta refers to delta
hedging, LRM refers to conventional local risk mini-
mization and MLRM refers to the modified local risk
minimization. Cost refers to the mean cost needed to
make the hedging error have zero expectation, Std is the
SD of hedging error and Liq cost refers to the mean
liquidity cost of the strategies. When we compare the
hedging cost of the three different hedging methods,
themean hedging cost of ourmodified hedging strategy
is less than those of the delta hedging strategy and the
conventional local risk minimization hedging strategy.
More importantly, compared with delta hedging and
conventional local riskminimization, the hedging strat-
egy under the modified local risk minimization reduces

Table 1. Option prices with different strikes and volatilities.
Strike

Volatility 95 96 97 98 99 100 101 102 103

0.10 10.8885 10.3317 9.7946 9.2755 8.7754 8.2944 7.8312 7.3869 6.9605
0.15 12.2087 11.6831 11.1751 10.6824 10.2043 9.7432 9.2979 8.8699 8.4532
0.20 13.7460 13.2437 12.7540 12.2798 11.8187 11.3702 10.9373 10.5153 10.1065
0.25 15.3913 14.9088 14.4325 13.9696 13.5198 13.0828 12.6587 12.2483 11.8482
0.30 17.0910 16.6219 16.1636 15.7159 15.2788 14.8515 14.4344 14.0270 13.6295

Table 2. Option prices with different values of λ1 and λ2.
λ2

λ1 0 0.25 0.50 0.75 1.00

9.5957 9.6390 9.6990 9.7583 9.8134
0.25 9.9215 10.0109 10.1081 10.1981 10.2795
0.50 10.2177 10.3445 10.4710 10.5861 10.6897
0.75 10.4771 10.6361 10.7890 10.9266 11.0504
0.00 10.7055 10.8932 11.0694 11.2279 11.3702

Table 3. Analysis on the hedging error under different hedging methods.
Delta LRM MLRM

λ1 λ2 Cost Std Liq cost Cost Std Liq cost Cost Std Liq cost

0:0 0:0 9.8149 1.4773 1.9347 9.7508 1.4291 1.8706 9.5957 0 1.5119
0:5 0:5 10.781 2.0050 1.8960 10.7442 1.9669 1.8768 10.4719 1.3408 1.4221
0:5 1:0 10.896 2.0919 1.7737 10.8692 2.0650 1.7289 10.6951 1.4731 1.3358
1:0 0:5 11.486 2.1329 2.0186 11.4834 2.1694 2.0231 11.0667 1.5709 1.5318
1:0 1:0 11.864 2.3914 1.9873 11.7065 2.2253 1.9024 11.3645 1.6480 1.4713

Table 4. Analysis on the hedging error under different hedging methods.
Delta LRM MLRM

λ1 λ2 Cost Std Liq cost Cost Std Liq cost Cost Std Liq cost

0:0 0:0 7.7334 1.5440 2.1810 7.7298 1.5624 2.1774 7.2883 0 1.6230
0:5 0:5 8.2393 1.9760 1.9707 8.2348 2.0001 1.9668 7.7515 1.3948 1.4013
0:5 1:0 8.2838 2.0948 1.8509 8.3077 2.1738 1.8655 7.8874 1.5775 1.3594
1:0 0:5 8.6712 2.1207 1.9683 8.6248 2.1165 1.9584 8.1468 1.6130 1.4275
1:0 1:0 8.7941 2.2673 1.8838 8.7709 2.2467 1.8740 8.3870 1.8004 1.3953
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the SD of hedging error significantly.We thus conclude
that among the three hedging strategies, our modified
local risk minimization method outperforms the other
two hedging methods. Table 4 also shows the hedging
error analysis when σ ¼ 0:2 and T ¼ 0:5.

V. Conclusion

We used a Markov chain approximation of a jump
model and computed the initial cost for an option by
minimizing quadratic incremental costs and solving
recursively. We applied the local risk minimization
method incorporating liquidity risk to price European
options in the discrete-time model with the presence of
jumps and liquidity costs. Numerical results showed
that the proposed hedging strategies reduce the SD of
the hedging error as well as the mean hedging cost,
which confirmed that our modified local risk minimi-
zation method performs better than other existing
hedging methods. Management of risks in combining
jump risk and liquidity risk is challenging. This article
provided a simple and useful model for option valua-
tion in the presence of jumps and liquidity costs.
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