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Abstract This paper studies portfolio optimization problems in a market with par-
tial information and price impact. We consider a large investor with an objective of
expected utility maximization from terminal wealth. The drift of the underlying price
process is modeled as a diffusion affected by a continuous-time Markov chain and the
actions of the large investor. Using the stochastic filtering theory, we reduce the opti-
mal control problem under partial information to the one with complete observation.
For logarithmic and power utility cases we solve the utility maximization problem
explicitly and we obtain optimal investment strategies in the feedback form. We com-
pare the value functions to those for the case without price impact in Bäuerle and
Rieder (IEEE Trans Autom Control 49(3):442–447, 2004) and Bäuerle and Rieder (J
Appl Prob 362–378, 2005). It turns out that the investor would be better off due to
the presence of a price impact both in complete-information and partial-information
settings. Moreover, the presence of the price impact results in a shift, which depends
on the distance to final time and on the state of the filter, on the optimal control strategy.
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1 Introduction

In the Merton’s classical portfolio optimization problem the underlying stock price
process is assumed to be independent of the actions of the investor. When the investor
is large, such as hedge funds, mutual funds or insurance companies, this may not hold,
as the action of the investor may influence the risky price process through different
channels. This gives us a motivation to consider stock price dynamics whose drift
is affected by the decisions of the large investor. Moreover, during long investment
periods drift of the price process may change in accordance with the changing market
conditions. This phenomenon can be reflected by a regime-switching drift. Investors
may or may not observe the part of the drift which is governed by the current market
conditions.

In this paper, we deal with a finite-time portfolio optimization problem for a large
investor, where the underlying price process is a diffusion affected by the state of
the market and the actions of the investor. The state of the market is represented by
a finite-state Markov chain allowing for the drift of the price process to change in
accordance with the changing market conditions for long investment periods. We also
let the drift change according to the investment decisions of the large investor. In fact,
the drift of the price process is taken to be a function of the fraction of the wealth
invested in the risky asset by the large investor. Hence, the portfolio decomposition
of the large investor might be considered as another factor governing the drift of the
price process.

We first assume that the state of the economy is observable (complete- information
case) by the investor. By allowing for the price impact, we extend the setting given in
Bäuerle andRieder (2004).Under the full information settingwe obtain results for gen-
eral impact and utility function (logarithmic and power) choices. For any sufficiently
regular impact function and for the choice of logarithmic utility, the corresponding
optimization problem can be solved directly and optimal investment strategies are
characterized explicitly. In the case of power utility, we address the problem by using
dynamic programming methods. In particular, the case with linear impact function
yields an optimal control in the feedback form as well as a probabilistic representation
for the corresponding value function. We show that for both logarithmic and power
utility preferences and linear impact function choice the resulting value function domi-
nates the value function corresponding to the utility maximization problem in a setting
without price impact.

Secondly, we repeat our analysis for the settingwhere the state of the economy is not
directly observable by the investor (partial-information case). Technically, this results
in an optimization problem under partial information. To solve such a problem we
derive an equivalent control problem under full information via the so-called reduction
approach (see, e.g., Fleming and Pardoux 1982). This requires the derivation of the
filtering equation for the unobservable state variable. In order to obtain the filtering
equations we address innovations approach to non-linear filtering (see, e.g., Elliott
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1982). Then, we introduce the filter for theMarkov chain as an additional state variable
for the optimization problem. This reduces our problem to a control problem with
complete information. We treat logarithmic and power utility cases in the same way
explained above. In particular, for the case with linear impact function we obtain an
optimal control in the feedback form and we provide a probabilistic representation
for the corresponding value function both for logarithmic utility and power utility
preferences. We obtain the result for the power utility case by employing a power
change of variable approach (see, e.g., Zariphopoulou 2001). Also, we derive no-
arbitrage conditions on the impact function.

Overall, we find that the investor benefits from the presence of the price impact
in the sense that the resulting value functions corresponding to full-information and
partial-information settings dominate the ones given in Bäuerle and Rieder (2004)
and Bäuerle and Rieder (2005), respectively. This result, of course, would be counter-
intuitive for the problem of an optimal order execution, where the investor is allowed to
trade only in one direction, e.g. only buy or sell orders.Moreover, our numerical results
based on a two-state Markov chain suggest that the presence of the price impact yields
a shift on the optimal control strategies. In particular, for the case of partial information
the magnitude of the shift depends on the distance to final time and on the state of the
filter.

There is an ample amount of literature concerning the portfolio optimization
problems with Markov chain modulated price dynamics under complete and partial-
information. The case with complete information has been addressed in Bäuerle and
Rieder (2004), in which the problem of expected utility maximization from terminal
wealth is solved by stochastic control methods for different utility functions. Sass
and Haussmann (2004) and Haussmann and Sass (2004) have treated the portfo-
lio optimization problem in a multi-asset setting under partial information and they
obtained the optimal portfolio strategy by using the martingale approach. On the other
hand, Bäuerle and Rieder (2005) has addressed the portfolio optimization problem
with unobservable Markov chain modulated drift process by using a dynamic pro-
gramming approach. Björk et al. (2010) considers a relatively general setting and it
provides explicit representations of the optimal wealth and investment processes for
the utility maximization problem under partial information by using the martingale
approach. Stettner (2004) studies the risk-sensitive portfolio maximization problem
when the dynamics of the asset prices depend on some economical factors, which are
completely or partially observed. Frey et al. (2012) solves the portfolio optimization
problem under partial information by including expert opinions in the analysis as a
second source of information. Concerning portfolio optimization problems under par-
tial information we also refer to Pham (2011) which gives a very broad overview of
previous studies in the subject.

The literature related with the large investor with price impact mainly considers
direct impact on the underlying stock price process. In particular, Cvitanić et al. (1996),
Cuoco and Cvitanić (1998) and Kraft and Kühn (2011) assume that the large investor
has an influence on the drift and volatility of the price process via the dollar amount
invested in the stock. Also, Ku and Zhang (2016) assume that the drift is affected by
the speed of the investor’s trading action. In this respect, our model deviates from the
existing literature as we assume that the impact on the drift of the price process is a
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function of the fraction of wealth invested in the stock. Busch et al. (2013) has studied
an optimal consumption and investment problem in which the price process follows a
regime-switching jump-diffusion. By modeling the intensity of the regime switch as
a function of the fraction of wealth invested in the stock, they allow the large investor
to have an indirect, persistent effect. Note that there is also a growing literature on
price impact models used in the context of optimal order execution problems where
the stock price process is driven by a diffusion whose drift is a function of the volume
or speed of trading (see, e.g., Almgren and Chriss 2001). For a detailed overview of
price impact models in the context of optimal order execution, we refer to the surveys
Gökay et al. (2011) and Gatheral and Schied (2013).

This paper is structured as follows. In Sect. 2, we introduce themodeling framework
and the optimization problem. In Sect. 3, we solve the optimization problem under
complete information for the case of logarithmic and power utility preferences and
linear impact function. In Sect. 4, we introduce the partial information setting, derive
the corresponding filtering equations and solve the optimization problem for the case
of logarithmic and power utility and linear impact functions. Section 5 illustrates
numerical results and Sect. 6 concludes.

2 Financial market model

We consider a finite time interval [0, T ] and a continuous-time finite-state Markov
chain Y defined on the filtered probability space (Ω,G ,G,P), where G = (Gt )t≥0
satisfies the usual conditions; all processes we consider here are assumed to be G-
adapted. Y represents the uncertainty of the state of the market. We denote by E =
{e1, e2, ..., eK } the state space where, without loss of generality, we assume that ek
is the basis column vector of RK . Y has the generator Q = (Qi j ) and its initial
distribution is denoted by Π = (Π1, · · · ,ΠK ).

We have a large investor with given initial wealth x ∈ R
+ and whose objective is to

find self-financing investment strategies that maximize expected utility from terminal
wealth. We consider a risk-free bond and a risky asset as the available instruments in
the market. The bond price process has the dynamics

dBt = r Btdt, t ≥ 0,

where r > 0 is the risk-free rate. Let ht ∈ R denotes the fraction of the wealth that is
invested in the risky asset at time t . Then, 1 − ht denotes the fraction of the wealth
invested in the bond at time t . In order to avoid technical difficulties we assume

A1 ht ∈ [−L , L], L ∈ R+ for all t ∈ [0, T ].
Note that in A1, L might be chosen large enough to guarantee that the optimal

solution is an interior one.
The price of the risky asset evolves according to a diffusion whose drift is a function

of the current state of the market and the fraction of the wealth invested in risky asset
by the large investor. That is,
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dSt
St

= (μ(Yt ) + g(ht )) dt + σdWt , S0 = s, (1)

where W is aG-Brownian motion independent of Y and the function g represents the
impact of the large investor on the drift of the price process. Also note that μ(Yt ) =
MYt with Mk = μ(ek), 1 ≤ k ≤ K . This is due to the finite-state property of the
Markov chain. In the sequel we are going to use both notations interchangeably.

The dynamics in (1) suggests that the portfolio choice of the large investor might
be taken as a signal by the rest of the market. That is, the portfolio choice of the large
investor acts as a factor governing the drift of the stock price.

Throughout this paper we cover the case with no impact on volatility. Note that in
this case the dynamics in (1) admits a unique weak solution provided that the function
g is sufficiently regular. On the other hand, the case with an impact on volatility, i.e.,
with σ(ht ), under partial information would bring us to an interesting setting where
actions of the investor create a trade-off between the increase in the controlled part of
the drift and the decrease in the precision of the estimates of the unobserved part of
the drift. However, this setting is also technically more delicate and is left for future
research.

The self-financing portfolio property assumption implies that the dynamics of the
wealth of the investor satisfies

dX (h)
t

X (h)
t

= ht
dSt
St

+ (1 − ht )
dBt

Bt
.

That is,

dX (h)
t

X (h)
t

= (ht (μ(Yt ) + g(ht )) + (1 − ht )r) dt + htσdWt , (2)

X (h)
0 > 0. In order to ensure that the wealth process is well defined, we consider

investment strategies that satisfy

A2
∫ T
0

(
hs X

(h)
s

)2
ds < ∞ almost surely.

Recall that one of the assumptions in the classical setting is that the investors are
price takers. In the current setting this assumption is violated as we allow the investor
to have price impact. Hence one can not rely on the no-arbitrage condition provided
for the classical setting. In this context, in the next theorem we derive the no-arbitrage
condition on the impact function g.

Theorem 1 (No-arbitrage) Let S be given by the SDE (1), A1,A2 are assumed to
hold and the function g satisfies |g(ht )| ≤ C |ht | for a positive constant C. Then, the
market is arbitrage free.

Proof For an admissible strategy ht , let

θ(t) = μ(Yt ) − r

σ
, 0 ≤ t ≤ T .
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Since Yt is adapted and σ is constant, θ(t) is a Gt -adapted process. By Girsanov
theorem, there is an equivalent probability measure P̃ under which

W̃t = Wt +
∫ t

0
θ(s) ds

is a Brownian motion. We note that |θ(t)| ≤ |μ(Yt )|+r
σ

for 0 ≤ t ≤ T and the Novikov
condition is satisfied. We also have the Radon–Nikodym derivative given by

dP̃

dP
= exp

(

−
∫ T

0
θ(t) dWt − 1

2

∫ T

0
θ2(t) dt

)

.

Define, for any positive α,

Lt = − exp (−αRt ) ,

where

Rt =
∫ t

0
hs (μ(Ys) + g(hs) − r) ds +

∫ t

0
hsσ dWs .

Then we have

Lt = − exp

(

−α

(∫ t

0
hsg(hs) ds +

∫ t

0
hsσ dW̃s

))

.

By Itô’s formula,

dLt = Lt

((

−αht g(ht ) + 1

2
α2h2t σ

2
)

dt − αhtσ dW̃t

)

.

If α > 2C
σ 2 , then the dt term becomes negative (note that Lt is negative). Considering

the integrability condition on Lt we obtain Lt is a P̃-supermartingale, thus

Ẽ(LT ) ≤ Ẽ(L0) = −1 (3)

where Ẽ represents expectations under probability measure P̃.
Let ht be an admissible strategy that satisfies P{e−rT X (h)

T ≥ X (h)
0 } = 1, which is

P{RT ≥ 0} = 1. Since P̃ and P are equivalent, P̃{RT ≥ 0} = 1 and using equation (3)
we obtain P̃{RT = 0} = 1. This implies that P{e−rT X (h)

T = X (h)
0 } = 1. Therefore, ht

cannot be an arbitrage strategy. ��
Suppose we are given a concave, increasing and twice continuously differentiable

utility function U : R+ → R. Then, the problem of the large investor is to
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max
h

E
x,i [U (X (h)

T )],

subject to the initial value of the wealth X (h)
t = x and initial state Yt = i .

3 Optimization problem under complete information

In this section, we assume that the investor’s filtration is given by G = (Gt )t≥0, that
is, the investor is assumed to observe the true state of the market and the stock price.
Accordingly, a portfolio strategy is admissible if ht ∈ Gt , for all t andA1,A2 hold.We
denote the set of admissible strategies byH . In the following we solve the investment
problems for the case of logarithmic and power utility preferences. The value function
of the investor is denoted by

V (t, x, i) = sup
h∈H

E
x,i

[
1

θ
(X (h)

T )θ
]

. (4)

3.1 Logarithmic utility

We first consider the portfolio optimization problem in the case of logarithmic utility.
In this case it is possible to solve the optimization problem for a general impact function
that is regular enough.

Proposition 1 Suppose that g is continuously differentiable andU (x) = log(x). Then
the optimal strategy

h∗ = arg
h∈H

maxEx,i [U (X (h)
T )]

exists. Moreover, for all (t, i) ∈ [0, T ]×E , h∗(t, i) ∈ Hlog
i , where Hlog

i is defined by

Hlog
i = {−L , L} ∪

{

l : Mi − r + g(l) + l

(
∂g(l)

∂l
− σ 2

)

= 0

}

. (5)

Proof Given the dynamics in (2) we apply Itô’s formula forU (x) = log(x) and obtain

U (X (h)
T ) = log(x) +

∫ T

t

(

hs (μ(Ys) + g(hs)) + (1 − hs)r − h2sσ
2

2

)

ds

+
∫ T

t
hsσdWs .
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For any h ∈ H , the stochastic integral
∫ T
t hsσdWs is well defined and has an expected

value zero. Thus, we have

E
x,i [U (X (h)

T )] = log(x) + E

[∫ T

t

(

hs (μ(Ys) + g(hs)) + (1 − hs)r − h2sσ
2

2

)

ds

]

.

(6)

Now we denote the integrand in (6) by

f (s, l) = l (μ(Ys) + g(l)) + (1 − l)r − l2σ 2

2
.

It follows from the continuity of g that for any s ∈ [t, T ], f (s, ·) is a continuous
function defined on the compact set [−L , L]. Hence, maximizer of f (s, ·) exists.
Moreover, the maximizer is an element of either {l : ∂ f (s,l)

∂l = 0} or {−L , L}. That is,
h∗
s ∈ Hlog

i . ��
Remark 1 It is possible to extend the result of Proposition 1 to the case where the
function g(·) is differentiable except for finitely many points of the domain [−L , L].
Let H0 denotes the set of the pointswhere g(·) is not differentiable. Then, Proposition 1
holds with h∗(t, i) ∈

(
Hlog
i ∪ H0

)
.

As a specific case, we now consider the optimization problem under complete infor-
mation with linear impact function and logarithmic utility. We set g(h) = βh, β > 0.
The following corollary is an immediate result of Proposition 1.

Corollary 1 Suppose U (x) = log(x) and g(h) = βh, β > 0. Then

Hlog
i =

{

−L , L ,
Mi − r

σ 2 − 2β

}

.

In particular, depending on the given set of model parameters we have the following
cases:

i) if 2β − σ 2 < 0, then, for all (t, i) ∈ [0, T ] × E , the optimal strategy is given by

h∗(t, i) = Mi − r

σ 2 − 2β
,

and the value function has the following stochastic representation:

V (t, x, i) = log(x) + r(T − t) + E
x,i

[∫ T

t

(μ(Ys) − r)2

2(σ 2 − 2β)
ds

]

.

ii) If 2β − σ 2 ≥ 0, then, for all (t, i) ∈ [0, T ] × E , the optimal strategy is given by

h∗(t, i) = L
(
1{Mi−r≥0} − 1{Mi−r<0}

)
,
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and the value function in this case has the following stochastic representation:

V (t, x, i)= log(x)+(T −t)

((

β− σ 2

2

)

L2+r

)

+ E
x,i

[

L
∫ T

t
|μ(Ys)−r |ds

]

.

Remark 2 In Corollary 1 the case with parameter condition i) implies that if Mi −r <

0, which can be interpreted as an indication of an unfavorable market environment,
optimal portfolio strategy is to put negative weight in the risky asset (short selling)
and positive in the bank account and vice versa.

When the parameter condition ii) holds and if Mi − r ≥ 0, then it is optimal to
borrow as much as possible from the bank account and invest the proceeds in the risky
asset. If, on the other hand, Mi − r ≤ 0, then the optimal is to sell the risky asset short
as much as possible and invest the proceeds in the bank account.

Remark 3 In the model without price impact the optimal portfolio strategy is given
by (see, Bäuerle and Rieder 2004)

h∗(t, i) = Mi − r

σ
,

and the corresponding value function is

V (t, x, i) = log(x) + r(T − t) + E
x,i

[∫ T

t

(μ(Ys) − r)2

2σ 2 ds

]

. (7)

Corollary 1 suggests that the value function of the investor in the presence of the
price impact dominates the value function given in (7). That is, the investor benefits
from the presence of the price impact.

3.2 Power utility

Next we assume that the utility function is U (x) = 1
θ
xθ , 0 < θ < 1. This gives a

constant relative risk aversion (CRRA) type preferences with risk aversion (1− θ)/x .
In contrast to the case of logarithmic utility it is not possible to solve the optimization
problem directly. Instead, we address this problem by dynamic programing approach.
To this, for any function v ∈ C1,2 and (t, x, i) ∈ [0, T ]×R

+ ×E , h ∈ H , we define
the differential operator

A hv(t, x, i) = ∂v(t, x, i)

∂t
+ ∂v(t, x, i)

∂x
x(h(Mi + g(h)) + (1 − h)r)

+ 1

2

∂2v(t, x, i)

∂x2
x2h2σ 2 +

∑

j

(v(t, x, j) − v(t, x, i))Qi j .

Hypothetically, the following Hamilton–Jacobi–Bellman (HJB) equation has to be
solved
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sup
h

A hv(t, x, i) = 0

v(T, x, i) = 1

θ
xθ for all (x, i) ∈ R

+ × E . (8)

Here note that due to the general form of the impact function g, it is not possible to
characterize the solution for the current optimization problem. In the following we
instead consider the case with a linear impact function and obtain explicit results.

Proposition 2 Suppose U (x) = 1
θ
xθ and g(h) = βh, β > 0 and

i) 2β − (1 − θ)σ 2 < 0, then the optimal strategy h∗ is given by

h∗(t, i) = Mi − r

(1 − θ)σ 2 − 2β
, (9)

and V (t, x, i) = 1
θ
xθu(t, i), for all (t, x, i) ∈ [0, T ]×R

+×E , where u(t, i) > 0,
with u(T, i) = 1, i ∈ E , is the unique solution of the following system of linear
differential equations

∂u(t, i)

∂t
+ a(i)u(t, i) +

∑

j

(u(t, j) − u(t, i))Qi j = 0, (10)

with a(i) = θr + θ(Mi−r)2

2((1−θ)σ 2−2β)
. Moreover, the value function has the following

stochastic representation

V (t, x, i) = xθ

θ
exp (rθ(T − t))Ex,i

[

exp

(∫ T

t

θ(μ(Ys) − r)2

2((1 − θ)σ 2 − 2β)
ds

)]

.

ii) 2β − (1 − θ)σ 2 ≥ 0, then the optimal strategy h∗ is given by

h∗(t, i) = L
(
1{Mi−r≥0} − 1{Mi−r<0}

)
,

and V (t, x, i) = 1
θ
xθu(t, i), for all (t, x, i) ∈ [0, T ]×R

+×E , where u(t, i) > 0,
with u(T, i) = 1, i ∈ E , is the unique solution of the following system of linear
differential equations

∂u(t, i)

∂t
+ a(i)u(t, i) +

∑

j

(u(t, j) − u(t, i))Qi j = 0, (11)

with a(i) = θr + θL|Mi − r |+ θL2
(
β + (θ−1)σ 2

2

)
. Moreover, the value function

has the following stochastic representation
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V (t, x, i) = xθ

θ
E
x,i

[

exp

(

θ(T − t)

(

L2
(

β − (1 − θ)σ 2

2

)

+ r

)

+ θL
∫ T

t
|μ(Ys) − r |ds

)]

.

Proof It follows from the form of the utility function and the linear structure of the
dynamics of the wealth process that for all i ∈ {1, . . . , K } the value function can be
rewritten as v(t, x, i) = 1

θ
xθu(t, i), for some function u ≥ 0 with u(T, i) = 1. This

gives following partial derivatives

∂v(t, x, i)

∂t
= 1

θ
xθ ∂u(t, i)

∂t
,

∂v(t, x, i)

∂x
= xθ−1u(t, i),

∂2v(t, x, i)

∂x2
= (θ − 1)xθ−2u(t, i).

Substituting these and g(h) = βh in (8), we obtain

−ru(t, i) = sup
h∈[−L ,L]

{
h(Mi − r)u(t, i) + h2(β + θ − 1

2
σ 2)u(t, i)

}

+ 1

θ

∂u(t, i)

∂t
+ 1

θ

∑

j

Qi j (u(t, j) − u(t, i)),

u(T, i) = 1 for all i ∈ {1, . . . , K }. (12)

We have the following necessary condition for the maximizer

2h(β + σ 2(θ − 1)

2
)u(t, i) + (Mi − r)u(t, i) = 0.

Suppose 2β < (1 − θ)σ 2. These together with u(t, i) > 0 (for the positivity, see
Remark 4 below) imply that the necessary condition is also sufficient. That is, the
maximizer is given by (9). Inserting this maximum and after some simple algebra,
we obtain (10). This differential equation has a unique solution u and we have the
following Feynman–Kac type representation of u(t, i) (see Bäuerle and Rieder 2004,
Lemma 2)

u(t, x, i) = exp (rθ(T − t))Ex,i
[

exp

(∫ T

t

θ(μ(Ys) − r)2

2((1 − θ)σ 2 − 2β)
ds

)]

.

In fact, this function v(t, x, i) = 1
θ
xθu(t, i) is a solution of the HJB equation (8),

v ∈ C1,2, and satisfies |v(t, x, i)| ≤ K (1+|x |) for a suitable constant K . By applying
a Verification Theorem (see, e.g., Bäuerle and Rieder 2004, Theorem 1), we obtain
v(t, x, i) is indeed an optimal value function V (t, x, i).

Next suppose 2β ≥ (1 − θ)σ 2. Then, the maximum is attained in one of the end
points of the interval [−L , L]. It is clear by inspection that the maximizer depends
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on the value of (Mi − r). Namely, h∗(t, i) = L for Mi − r > 0 and h∗(t, i) = −L
otherwise. Hence, inserting these in (12) and after some simple algebra we obtain the
system of differential equations in (11). By the same argument as in case i), the proof
is completed. ��
Remark 4 Note that the above representations of u imply that the function u(t, i) stays
positive provided that the given parameter restrictions are satisfied.

Remark 5 Proposition 2 suggests that for any parameter condition the current value
function dominates the value function given in Bäuerle and Rieder (2004), Theorem
3. This means that the investor benefits from the presence of the price impact also in
the case of power utility preferences.

4 Optimal control under partial information

Throughout this section we assume that the state process Y is not directly observable
by the large investor. Instead, she observes the price process S and knows the model
parameters, that is, Π , Q, M and the function g(·). Hence, information available to
the large investor is carried by the filtration F = (Ft )t≥0, Ft = σ {Su, 0 ≤ u ≤ t}.
We note that Ft ⊂ Gt .

Recall that the optimization problem of the large investor is to find investment
strategies that maximize the expected utility from terminal wealth. We assume that
this decision depends only on the information available to the investor at time t . That
is, we consider the self-financing investment strategies h such that ht isFt -adapted.

Accordingly, an F-adapted self-financing investment strategy which satisfy A1
and A2 is called an admissible investment strategy. We denote the set of admissible
investment strategies by H F .

Suppose we are given a concave, increasing and twice continuously differentiable
utility functionU : R+ → R. The optimization problem of the large investor is given
by

sup
h∈H F

E
x
[
U (X (h)

T )
]
,

where Ex denotes the conditional expectation given X0 = x .
Considering F-adapted investment strategies, we naturally end up with an optimal

control problem under partial information. In the next part, in order to solve this
problem we will derive an equivalent control problem under complete information via
the so-called reduction approach (see, e.g., Fleming and Pardoux 1982).

4.1 Reduction of the optimal control problem

The reduction approach requires the derivation of the filtering equation for the unob-
servable state of the underlying state variable. In what follows we will denote the
filter for the unobserved state of the Markov chain by pt = (p1t , · · · , pKt ) with
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pkt = P(Yt = ek |Ft ). It follows from the finite-state property of the Markov chain
that

E[μ(Yt )|Ft ] =
K∑

k=1

μ(ek)p
k
t = Mpt .

We now introduce the process

Ŵt := Wt +
∫ t

0

μ(Ys) − Mps
σ

ds. (13)

The following lemma shows that Ŵt is an F-Brownian motion and gives the Ft -
dynamics of the filter process p.

Lemma 1 The process given in (13) is an Ft -Brownian motion. Moreover, the filter
process pkt , 1 ≤ k ≤ K is the unique solution of

dpkt =
∑

j

Q jk p j
t dt +

(
Mk − Mpt

σ

)

pkt dŴt , (14)

with the initial condition pk0 = Πk .

Proof In order to prove that Ŵ is an F-Brownian motion we will follow the similar
arguments given in the proof of Elliott (1982, Lemma 1.4). First, it follows from
definition (13) and the Fubini theorem that we have

E

[
Ŵt − Ŵs

∣
∣Fs

]
= E

[∫ t

s

μ(Yu) − Mpu
σ

du + Wt − Ws
∣
∣Fs

]

= 0 a.s..

Hence, Ŵ is an F-martingale. Second, Ŵ is a continuous G-semimartingale with the
quadratic variation 〈Ŵ , Ŵ 〉t = 〈W,W 〉t = t . As this quadratic variation process is
deterministic, it stays same under a change of filtration. That is, the F-quadratic varia-
tion of Ŵ at time t is also equal to t . Finally, it follows from the Levy’s characterization
of the Brownian motion that Ŵ is an F-Brownian motion.

Showing that Ŵ is a Brownian motion with respect to the observation filtration F,
we can make use of the well-known martingale representation results. This brings us
to a situation where we can apply the standard results given in, for example, Wonham
(1964) and Elliott et al. (1994, Chapter 8), and obtain (14). ��
Now it follows from (2) and Lemma 1 that F semimartingale decomposition of X is
given by

dX (h)
t

X (h)
t

= (ht (Mpt + g(ht )) + (1 − ht )r) dt + htσdŴt , X0 = x . (15)
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Then, it follows from (14) and (15) that the (K + 1)-dimensional process (X, p) ∈
[0, T ]×R

+ ×ΔK , whereΔK is the K -dimensional simplex, is an F-Markov process.
Considering this (K + 1)-dimensional process as the state process, we introduce the
equivalent optimal control problem under complete information with the following:

max
h

E
x,p[U (X (h)

T )],

where Ex,p denotes the conditional expectation given X0 = x and p0 = p. Accord-
ingly, the value functionof the investor in the reducedmodel is denotedby the following

V (t, x,p) = sup
h∈H F

E
x,p[U (X (h)

T )]. (16)

4.2 Logarithmic utility

As the first case we consider the portfolio optimization problem for a large investor
with logarithmic utility preferences, that is, we assume that U (x) = log(x). In this
case, the optimal control problem can be solved directly.

Proposition 3 Suppose g is continuously differentiable and U (x) = log(x). Then the
optimal strategy

h∗ = arg
h∈H F

maxEx,p[U (X (h)
T )]

exists. Moreover, for all t ∈ [0, T ], h∗
t ∈ Hlog

t , where Hlog
t is defined by

Hlog
t = {−L , L} ∪

{

l : Mpt − r + g(l) + l(
∂g(l)

∂l
− σ 2) = 0

}

. (17)

Proof Given the dynamics in (15) we apply Itô’s formula for U (Xt ) = log(Xt ) and
get

U (X (h)
T ) = log(x) +

∫ T

t
(hs (Mps + g(hs))

+(1 − hs)r − h2sσ
2

2

)

ds +
∫ T

t
hsσdŴs .

For any h ∈ H F , the stochastic integral
∫ T
t hsσdŴs is well defined and has an

expected value zero. Thus, we have

E
x,p[U (X (h)

T )] = log(x)+E
x,p

[∫ T

t

(

hs (Mps+g(hs)) + (1 − hs)r − h2sσ
2

2

)

ds

]

.

(18)
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Now we denote the integrand in (18) by

f (s, l) = l (Mps + g(l)) + (1 − l)r − l2σ 2

2
.

It follows from the continuity of g that for any s ∈ [t, T ], f (s, ·) is a continuous
function defined on the compact set [−L , L]. Hence, a maximizer of f (s, ·) exists.
Moreover, the maximizer is an element of either

{
l : ∂ f (s,l)

∂l = 0
}
or {−L , L}. That is,

h∗
s ∈ Hlog

s for all s ∈ [t, T ]. ��
Remark 6 It is possible to extend the result of Proposition 3 to the case where the
functions g(·) is continuously differentiable except for finitely many points of the
domain [−L , L]. Let H0 denotes the set of the points where g(·) is not differentiable.
Then, Proposition 3 holds with h∗

t ∈
(
Hlog
t ∪ H0

)
.

Next, as an example we consider the optimization problem under partial-information
with linear impact function and logarithmic utility. Formally, we assume g(h) = βh,
β > 0. The following corollary follows from Proposition 3.

Corollary 2 SupposeU (x) = log(x) and g(h) = βh, β > 0. Then, for all t ∈ [0, T ],

Hlog
t =

{

−L , L ,
Mpt − r

σ 2 − 2β

}

.

In particular, depending on the given set of model parameters we have the following
cases:

i) If 2β − σ 2 < 0, then, for all t ∈ [0, T ], the optimal portfolio strategy is given by

h∗
t = Mpt − r

σ 2 − 2β
,

and the value function V (t, x,p), for all (t, x,p) ∈ [0, T ] × R
+ × ΔK , has the

following stochastic representation:

V (t, x,p) = log(x) + r(T − t) + E
x,p

[∫ T

t

(Mps − r)2

2(σ 2 − 2β)
ds.

]

ii) If 2β − σ 2 ≥ 0, then, for all t ∈ [0, T ], the optimal portfolio strategy is given by

h∗
t = L

(
1{Mpt−r≥0} − 1{Mpt−r<0}

)
,

and the value function V (t, x,p), for all (t, x,p) ∈ [0, T ] × R
+ × ΔK , has the

following stochastic representation:

V (t, x,p) = log(x)+(T −t)

(

(β − σ 2

2
)L2+r

)

+ E
x,i

[

L
∫ T

t
|Mps − r |ds

]

.
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Remark 7 Here, if Mpt − r < 0 (that is, if the current market environment is inferred
to be unfavorable) the optimal strategy is to put negative weight in the risky asset (short
selling) and to invest proceeds in the bank account. On the other hand, if Mpt −r ≥ 0,
then it is optimal to borrow as much as possible from the riskless rate and invest the
amount in the risky asset.

In all of the above cases, when compared to the case with complete information
the resulting optimal strategy is obtained by replacing the unknown drift by its filter
estimate. That is, the certainty equivalence principle holds.

4.3 Power utility

In what follows we assume that U (x) = 1
θ
xθ , 0 < θ < 1. Here we mainly follow

the procedure given in the previous section and solve the problem by using dynamic
programming methods. To begin with, for any function v ∈ C1,2 and (t, x,p) ∈
[0, T ] × R

+ × ΔK , h ∈ H F we define the differential operator

A hv(t, x,p) = ∂v(t, x,p)

∂t
+ ∂v(t, x,p)

∂x
x(h(Mp + g(h)) + (1 − h)r)

+ 1

2

∂2v(t, x,p)

∂x2
x2h2σ 2 +

∑

k, j

∂v(t, x,p)

∂pk
Q jk p j

+ 1

2σ 2

∑

k, j

∂2v(t, x,p)

∂pk∂p j
(Mk − Mp)(M j − Mp)pk p j

+ xh
∑

k

∂2v(t, x,p)

∂x∂pk
(Mk − Mpt )pk . (19)

Hypothetically, the value function solves the following HJB equation

sup
h

A hv(t, x,p) = 0

v(T, x,p) = 1

θ
xθ for all (x,p) ∈ R

+ × ΔK . (20)

Due to the general form of the impact function g, it is not possible to show the
existence of a solution or to characterize it as the solution of equation (20) for the
current optimization problem. Instead we consider the optimization problem under
partial informationwith power utility preferences and linear impact function. This case
allows to derive the optimal control in the feedback form and yields a probabilistic
representation for the corresponding value function.

Proposition 4 Suppose U (x) = 1
θ
xθ , g(h) = βh, β > 0 and 2β − (1 − θ)σ 2 < 0.

Define γ = (1−θ)σ 2−2β
σ 2−2β

. The value function is given by V (t, x,p) = 1
θ
xθu(t,p)γ , for

all (t, x,p) ∈ [0, T ] × R
+ × ΔK , where u > 0, with u(T,p) = 1, for all p ∈ ΔK , is

the solution of the parabolic partial differential equation
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u(t,p)

(
θ

γ

(

r+ (Mp − r)2

2γ (σ 2 − 2β)

))

+ 1

2σ 2

∑

k, j

∂2u(t,p)

∂pk∂p j
(Mk − Mp)(M j − Mp)pk p j

+
∑

k

∂u(t,p)

∂pk

⎛

⎝
∑

j

Q jk p j + θ

γ

(Mp − r)(Mk − Mp)

σ 2 − 2β
pk

⎞

⎠ + ∂u(t,p)

∂t
= 0.

(21)

Moreover, the optimal portfolio strategy h∗ is given in feedback form as

h∗(t,p) = Mp − r

(1 − θ)σ 2 − 2β
+ γ

∑
k

∂u(t,p)
∂pk

(Mk − Mp)pk

u(t,p)((1 − θ)σ 2 − 2β)
. (22)

Proof Due to the form of the utility function and the linear structure of the dynamics
of the wealth process, we use the ansatz v(t, x,p) = 1

θ
xθu(t,p)γ , for some function

uγ > 0 with u(T,p) = 1, for all p ∈ ΔK . This gives the following partial derivatives

∂v(t, x,p)

∂t
= 1

θ
xθ γ u(t,p)γ−1 ∂u(t,p)

∂t
,

∂v(t, x,p)

∂x
= xθ−1u(t,p)γ ,

∂2v(t, x,p)

∂x2
= (θ − 1)xθ−2u(t,p)γ ,

∂v(t, x,p)

∂pk
= 1

θ
xθ γ u(t,p)γ−1 ∂u(t,p)

∂pk
,

∂2v(t, x,p)

∂pk∂p j
= 1

θ
xθ

(

γ (γ − 1)u(t,p)γ−2 ∂u

∂pk

∂u

∂p j
+ γ u(t,p)γ−1 ∂2u(t,p)

∂pk∂p j

)

,

∂2v(t, x,p)

∂pk∂x
= xθ−1γ u(t,p)γ−1 ∂u(t,p)

∂pk
.

Substituting these and g(h) = βh in (20),weobtain the following equation for function
u for some γ that will be determined below.

sup
h∈[−L ,L]

{
u(t,p)(h(Mp + βh) + (1 − h)r) + θ − 1

2
u(t,p)h2σ 2

+ hγ
∑

k

∂u(t,p)

∂pk
(Mk − Mp)pk

}
+ 1

2σ 2

γ

θ

∑

k, j

(Mk − Mp)(M j − Mp)pk p j

×
(

∂2u(t,p)

∂pk∂p j
+ (γ − 1)u(t,p)−1 ∂u(t,p)

∂pk

∂u(t,p)

∂p j

)

+ γ

θ

∂u(t,p)

∂t

+ γ

θ

∑

k, j

∂u(t,p)

∂pk
Q jk p j = 0, (23)

with u(T,p) = 1. The necessary condition for the optimizer of the above equation is
given by

h(2β − (1 − θ)σ 2)u(t,p) + (Mp − r)u(t,p) + γ
∑

k

∂u(t,p)

∂pk
(Mk − Mp)pk = 0.
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Provided that 2β − (1 − θ)σ 2 < 0 and u(t,p) > 0 (see Proposition 5 below) the
necessary condition is also sufficient. This suggests that the maximizer is (22). Now
we multiply (23) by θ/γ and insert h∗. This gives

0 = ∂u(t,p)

∂t
+

∑

k, j

∂u(t,p)

∂pk
Q jk p j + θ

γ
u(t,p)r

+ h∗(t,p)2u(t,p)
θ

γ

(
(1 − θ)σ 2

2
− β

)

+ 1

2σ 2

∑

k, j

(Mk−Mp)(M j −Mp)pk p j

×
(

∂2u(t,p)

∂pk∂p j
+ (γ − 1)u(t,p)−1 ∂u(t,p)

∂pk

∂u(t,p)

∂p j

)

. (24)

This is a non-linear equation. In what follows, in order to eliminate the non-linearity
in (24) we follow the idea given in Zariphopoulou (2001) and choose γ to satisfy

γ = (1 − θ)σ 2 − 2β

σ 2 − 2β
.

With this choice of γ we have

0 =
(

γ
∑

k
∂u
∂pk

(Mk − Mp)pk

u(t,p)((1 − θ)σ 2 − 2β)

)2

u(t,p)
θ

γ

(
(1 − θ)σ 2

2
− β

)

+
(

γ
∑

k

∂u

∂pk
(Mk − Mp)pk

)2
1

u(t,p)

γ − 1

2σ 2 ,

and hence we get the linear parabolic differential equation given in (21). Here note
that the coefficients are continuous and bounded functions and hence there exists a
solution to this parabolic differential equation, and also the solution to this Cauchy
problem is unique (see, for example, Friedman 1983).

We have proved that the function v(t, x,p) = 1
θ
xθu(t,p)γ is a solution of the

HJB equation (20). Next we will show v(t, x,p) is indeed the optimal value function
V (t, x,p). Let h ∈ H F be an arbitrary investment strategy. By applying Itô’s formula
to v(t, x,p), we have

v(T, X (h)
T , pT ) = v(t, x,p) +

∫ T

t
A hv(s, X (h)

s , ps) ds

+
∫ T

t

∂v(s, X (h)
s , ps)

∂x
X (h)
s hsσdŴs

+
∫ T

t

∑

k

∂v(s, X (h)
s , ps)

∂pk

(
Mk − Mps

σ

)

pks dŴs
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≤ v(t, x,p) +
∫ T

t
(X (h)

s )θu(s, ps)
γ hsσ dŴs

+
∫ T

t

∑

k

1

θ
(X (h)

s )θγ u(s, ps)
γ−1 ∂u(s, ps)

∂pk

(
Mk−Mps

σ

)

pks dŴs

(25)

Note that the inequality (25) follows from the HJB equation. Under A2, the above
stochastic integrals with respect to Ŵs are local martingales. Considering they are
bounded below due to the fact v ≥ 0, they are supermartingales. Taking conditional
expectations,

E
t,x,p

[
1

θ
(X (h)

T )θ
]

≤ v(t, x,p).

Therefore, we have V (t, x,p) ≤ v(t, x,p). If we have a portfolio strategy h∗(t,p)

given by (22), we have equality in (25) with h∗(t,p). Moreover, h∗(t,p) is bounded,
u(s, ps) and

∂u(s,ps )
∂pk

are continuous, thus the stochastic integrals are in fact martin-
gales. Taking conditional expections, we have

E
t,x,p

[
1

θ
(X (h∗)

T )θ
]

= v(t, x,p).

The proof is now completed. ��
Remark 8 If 2β − (1 − θ)σ 2 > 0, the optimal strategy will be either L or −L . For
the complete information case, this decision only depends the relation between the
Markov modulated part of the drift and the risk-free rate. On the contrary, for the
partial information case the decision is rather complicated and depends on the values
of the variables in (23).

Here, comparing the resulting optimal control with the control corresponding to
the complete information case, we conclude that the certainty equivalence principle
does not hold for the case of power utility. In particular, in the current case there is an
additional term arising due to the uncertainty about the state of the market.

Proposition 5 Suppose 2β −(1−θ)σ 2 < 0 holds. Then, for all (t,p) ∈ [0, T ]×ΔK ,
the function u has the following stochastic representation,

u(t,p) = E
P

∗
[

exp

{
θr

γ
(T − t) + θ

2γ 2(σ 2 − 2β)

∫ T

t
(Mps − r)2ds

} ∣
∣
∣pt = p

]

,

(26)

where the kth component of process p has the following dynamics under measure P∗:

dpkt =
⎛

⎝
∑

j

Q jk p j
t + θ

γ

(Mpt − r)(Mk − Mpt )

σ 2 − 2β
pkt

⎞

⎠ dt + Mk − Mpt
σ

pkt dW
P

∗
t .
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Fig. 1 Optimal portfolio strategy for power utility preferences with and without price impact for full
(dashed) and partial (solid) information settings. h∗,1 (h∗,2): optimal strategy when the Markov chain is
in the good (bad) state, h∗,p1=a : optimal strategy when the filter is in state p = (a, 1 − a)

Proof Result immediately follows from the application of the Feynman-Kac theorem
(see, e.g., Pham (2009, Thm 1.3.17) for the pde given in (21). ��

5 Numerical study

In the numerical study, we first compare the optimal trading strategy for the full
and partial information settings with and without price impact. To this, we set the
following set of parameters: T = 2, β = 0.02, σ = 0.28, M = (0.06,−0.002)�,
r = 0.001, θ = 0.3, (Q12, Q21) = (2, 0.01). Optimal trading strategies for the full-
information case obtained in a straightforward way, that is, by inserting the parameters
on the formulas given in Proposition 2. On the other hand, to obtain the corresponding
optimal strategies in the case of partial information, we use an explicit finite-difference

123



Portfolio optimization for large investor under partial…

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

θ

Optimal Trading Strategy

h*,p
1
=0.02

h*,p
1
=0.5

h*,p
1
=0.9

h*,2

h*,1

Fig. 2 Optimal portfolio strategy with full (dashed) and with partial (solid) information for power utility
preferences with different levels of risk aversion. h∗,1 (h∗,2): optimal strategy when the Markov chain is
in the good (bad) state, h∗,p1=a : optimal strategy when the filter is in state p = (a, 1 − a)
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Fig. 3 Value function for partial information case with (dashed) and without (solid) price impact for power
utility preferences when the filter is in state p = (0.02, 0.98) and p = (0.9, 0.1)

method and solve the pde given in (21) numerically. Figure 1 shows that the presence
of the price impact yields an upward shift on the optimal trading strategies, with an
amount depending on the time and on the state of the filter. In particular, the higher
the value of p1, the larger the shift. Note also that the amount of the shift decreases as
the time gets closer to the maturity time T .

Next, we analyze the behavior of optimal trading strategies with respect to the risk
aversion level, represented by θ . Figure 2 suggests that all types of optimal trading
strategies are increasing with a decreasing level of risk aversion.
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We finally compare the value functions of the optimal control problem under partial
information with and without price impact. We conclude that the value function with
price impact dominates the one without the price impact for any state of the filter.
Results for the case when the filter is in state p = (0.02, 0.98) and p = (0.9, 0.1) are
given in Fig. 3.

6 Conclusion

We investigate the problem of maximizing the expected utility from terminal wealth of
a large investor whose action has some lasting impact on the price process under the
changing market environment. We solve the optimal investment problem explicitly
with the linear price impact under complete information. The decision of optimal
strategies depends on the relationship between the Markov modulated part of the
drift and the risk-free rate, and the relationship between the price impact part of the
drift and the volatility. We then study the investment problem further for the large
investor under partial information, and obtain the optimal investment strategies by
the reduction approach. For power utility, the optimal strategy is given, unlike the
complete information case, with an additional term due to the uncertainty about the
market condition. We observe, for logarithmic and power utility functions treated in
the paper, the large investor would gain benefits from the price impact by choosing
optimal strategies under partial information as well as complete information.

The questions on optimal investment strategies for the non-constant volatility σ(·)
case remain unanswered. This may be an interesting and exciting case since actions
of the investor create a trade-off between the increase in the controlled part and the
decrease in the precision of the estimates of the unobserved part of the drift. We leave
this challenging issue for future study.
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