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a b s t r a c t 

This paper studies derivatives to prepare for financial risk from unexpected events. It is dif- 

ficult for firms and financial institutions to hedge losses triggered by natural catastrophes 

such as earthquakes, by using derivative securities with fixed initiation and maturities. In 

this context, we consider an option that is initiated at random by an unexpected event, 

and moreover, is connected with a barrier of knock-in or knock-out type for asset price 

monitoring until the time of event. We derive closed-form valuation formulas for these 

options. 
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1. Introduction 

Financial institutions have been increasingly making use of barrier options, digital options and other path-dependent

options. These options are used for a wide range of hedging, risk management and investment purposes as explained in

Goldman et al. (1979) and Hull (2006) . Furthermore, in recent years many insurance companies have developed more in-

novative saving products, and these products usually have features of barrier option. In other words, they allow the policy-

holder to participate in favourable investment performance while maintaining a floor guarantee on the benefit level. 

Barrier options have become increasingly popular because they are more flexible and cheaper than vanilla options.

Also, they have been created to provide the insurance value of an option without charging as much premium. Many pa-

pers provided pricing formulas for various types of barrier options since Merton (1973) (See for example Rich (1997) and

Pelsser (20 0 0) ). For more complicated barrier options, partial barrier options which is monitored for a part of the option’s

lifetime are studied in Heynen and Kat (1994) and Hui (1997) , where the ending time of monitoring is different from the

expiry date of the option. But, the expiry date as well as the ending time of monitoring are predetermined dates. 

This paper investigates derivatives which can play a role as an insurance for unexpected events such as climate extremes

or earthquakes. Normally, firms and financial institutions hedge risks for their portfolios using derivatives with fixed matu-

rities. If they wish to hedge the financial risk posed by natural catastrophes, they can not utilize contracts such as digital

options with fixed starting time and maturity as in the literature on derivatives, because it is uncertain when a catastrophe
∗ Corresponding author. Fax: +82 55 772 1429. 
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occurs. Jarrow (2010) provided a closed form solution for valuing Cat bonds to manage the risks of catastrophe event losses.

Jaimungal and Wang (2006) derived a pricing formula for European catastrophe equity put options under the assumption

that the volatility of the stock price is constant and that the amounts of catastrophe losses have a general distribution.

Jiang et al. (2013) presented a novel catastrophe option pricing model that considers counterparty risk. In this paper, we

consider financial contracts that initiate immediately at a time when a catastrophe occurs, and that have the feature of

asset price monitoring with a knock-in or knock-out barrier. 

The exponential distribution has been widely used in various categories including life testing, reliability, and operations

research owing to its advantages which are nice mathematical form and memoryless property. It is well known that an

exponential random variable can be applied to the waiting time until the first event and the lifetime of an item that does

not age. See for example Epstein and Sobel (1954) and Embrechts and Schmidli (1994) . In this context, we study a derivative

which initiates at an exponential random time and matures thereafter, and contains knock-in or knock-out barriers for asset

monitoring in advance. Jun and Ku (2013) studied digital barrier options with an exponential random time, in which barrier

option is given to an investor after a random event. On the contrary, barrier option is used in this paper for a monitoring

purpose before the event. 

The outline of the paper is as follows. Section 2 provides the economic rationale for the options considered in this paper.

Section 3 presents pricing formulas for digital options linked with down-and-in and down-and-out barrier options, and a

graph in Section 3 shows the properties of the solutions. Conclusion is provided in Section 4 . 

2. Economic rationale 

Risk arises from natural events, such as earthquakes, floods and hurricanes. For example, in March 2011, the earthquake

in northeast Japan caused a huge property loss and many firms have suffered from the natural disaster. Also, strong earth-

quakes causing severe damage to the California area have occurred a number of times in the past. 

Suppose that a natural catastrophe such as a large earthquake may occur in a developed country, and that a firm in the

country is concerned with the financial risk that can be posed by a large earthquake. Then the firm may want to make the

following contract with a financial institution as part of their risk management strategy: A digital option will be provided in

the event of a large earthquake, i.e., a fixed amount of money will be paid out at maturity (at a fixed time after the event),

with the requirement that the underlying asset price never falls to reach a specified barrier until the time of earthquake. This

condition may be an indication that the firm has not been in financial difficulties before the event. As long as the barrier

is not hit, the contract is kept intact. Also, to reduce the magnitude of the premium the firm might add the condition that

the underlying asset price must be under the specified level at maturity. The motivation is that the earthquake actually

dealt a severe blow to the firm. Thus, the contract is very useful for the directly and substantially affected firm from the

earthquake. 

The firm pays a premium to obtain this digital option contract linked with knock-out barrier in preparing emergency.

Since this type of contract has the features of both barrier and digital options, it costs much less, but is useful for preventing

risks posed by random events like a large earthquake. The pricing formula for such an option is derived in Corollary 3.4 . 

3. Options with random initiation under asset price monitoring 

Suppose that r is the risk-free interest rate and σ > 0 is constant. We assume the price of the asset S t follows a ge-

ometric Brownian motion S t = S 0 exp 

((
r − σ 2 / 2 

)
t + σW t 

)
where W t is a standard Brownian motion under the risk-neutral

probability P . 

Let X t = 

1 
σ ln ( S t / S 0 ) and μ = 

r 
σ − σ

2 . Then X t = μt + W t . We define the minimum and the maximum for X t to be 

m 

b 
a = inf 

t∈ [ a,b] 
(X t ) and M 

b 
a = sup 

t∈ [ a,b] 

(X t ) 

and denote by E P the expectation operator under the P -measure. 

Suppose that τ is an exponential random variable with parameter λ and a barrier option with the lifetime of length τ is

initiated at time 0, i.e., the monitoring period for asset price barrier is [0, τ ]. We define d = 

1 
σ ln (D/S 0 ) , u = 

1 
σ ln (U/S 0 ) and

k = 

1 
σ ln (K/S 0 ) where D ( ≤ S 0 ) is a down barrier, U ( ≥ S 0 ) is a up barrier and K is a strike price. 

Consider a barrier option of knock-in type followed by another option which pays out the amount of A if the underlying

asset price falls to reach the barrier D in [0, τ ] and is greater than the strike price K at time τ + T . The payoff of the option is

zero if the underlying asset price does not hit the barrier D or falls below the strike K at time τ + T . We derive a closed-form

formula for the price of this option. 

Theorem 3.1. The value V 1 of a digital option connected with a down-and-in option which terminates at exponential random

time τ with parameter λ is 

V 1 = A 

[
a 1 e 

−r T + 
(
μ+ 

√ 

2(λ+ r )+ μ2 

)
d 
N(d 1 ) − a 1 e 

λT + 
(
μ+ 

√ 

2(λ+ r)+ μ2 

)
k 
N(d 2 ) 

]

− A 

(
D 

S 0 

) 2 
σ

√ 

2(λ+ r)+ μ2 
[

a 2 e 
−r T + 

(
μ−

√ 

2(λ+ r )+ μ2 

)
d 
N ( d 1 ) + a 2 e 

λT + 
(
μ−

√ 

2(λ+ r)+ μ2 

)
k 
N 

(
d 2 + 

2 k − 2 d √ 

T 

)]
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where 

a 1 = 

λ√ 

2(λ + r) + μ2 

(
μ + 

√ 

2(λ + r) + μ2 

) , a 2 = 

λ√ 

2(λ + r) + μ2 

(
μ −

√ 

2(λ + r) + μ2 

) , 

d 1 = 

d − k + μT √ 

T 
, d 2 = 

d − k − T 
√ 

2(λ + r) + μ2 

√ 

T 

and N ( · ) is the cumulative standard normal distribution function. 

Proof. The value V 1 of this option contract is expressed as 

V 1 = E P 
[
e −r(τ+ T ) A 1 { m 

τ
0 
≤d, S τ+ T >K} 

]
= A E P 

[
e −r(τ+ T ) 1 { m 

τ
0 
≤d, X τ >d, X τ+ T >k } 

]
+ A E P 

[
e −r(τ+ T ) 1 { X τ ≤d, X τ+ T >k } 

]
. (3.1) 

Using the joint density of X t and its running minimum m 

t 
0 

at time t ( Borodin and Salminen (2002) ), the first expectation

term in (3.1) is 

E P 
[
e −r(τ+ T ) 1 { m 

τ
0 
≤d, X τ >d, X τ+ T >k } 

]
= 

∫ ∞ 

d 

∫ ∞ 

0 

λe −λt e −r(t+ T ) P (m 

t 
0 ≤ d, X t ∈ dz 1 ) P (X t+ T > k | z 1 ) dt 

= 

∫ ∞ 

d 

(∫ ∞ 

0 

λe −λt e −r(t+ T ) 1 √ 

2 πt 
e μz 1 − μ2 

2 t− (z 1 −2 d) 2 

2 t dt 

)
P (X T > k − z 1 ) dz 1 . (3.2) 

Laplace transform in Fusai and Roncoroni (2008) is applied to the inner integral in (3.2) . Then ∫ ∞ 

0 

λe −λt e −r(t+ T ) 1 √ 

2 πt 
e μz 1 − μ2 

2 t− (z 1 −2 d) 2 

2 t dt 

= 

λ√ 

2 

e −rT + μz 1 

∫ ∞ 

0 

e −(λ+ r+ μ2 

2 ) t 
1 √ 

πt 
e −

( 
√ 

2 (z 1 −2 d)) 2 

4 t dt 

= 

λe −rT √ 

2(λ + r) + μ2 
e μz 1 −| z 1 −2 d| √ 

2(λ+ r)+ μ2 
. 

Thus, 

E P 
[
e −r(τ+ T ) 1 { m 

τ
0 
≤d, X τ >d, X τ+ T >k } 

]
= e 2 d 

√ 

2(λ+ r)+ μ2 

∫ ∞ 

d 

λe −rT √ 

2(λ + r) + μ2 
e (μ−

√ 

2(λ+ r)+ μ2 ) z 1 N 

(
−k + z 1 + μT √ 

T 

)
dz 1 (3.3) 

where N ( · ) is the cumulative standard normal distribution function. In the similar way, the second expectation in (3.1) is 

E P 
[
e −r(τ+ T ) 1 { X τ ≤d, X τ+ T >k } 

]
= 

∫ d 

−∞ 

∫ ∞ 

0 

λe −λt e −r(t+ T ) P (X t ∈ dz 2 ) P (X t+ T > k | z 2 ) dt 

= 

∫ d 

−∞ 

λ√ 

2 

e −rT + μz 2 

∫ ∞ 

0 

e −(λ+ r+ μ2 

2 ) t 
1 √ 

πt 
e −

( 
√ 

2 z 2 ) 
2 

4 t dt P (X T > k − z 2 ) dz 2 

= 

∫ d 

−∞ 

λe −rT √ 

2(λ + r) + μ2 
e (μ+ 

√ 

2(λ+ r)+ μ2 ) z 2 N 

(
−k + z 2 + μT √ 

T 

)
dz 2 . (3.4) 

Let 

a 1 = 

λ√ 

2(λ + r) + μ2 

(
μ + 

√ 

2(λ + r) + μ2 

)
and 

a 2 = 

λ√ 

2(λ + r) + μ2 

(
μ −

√ 

2(λ + r) + μ2 

) . 
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Apply the integration by parts to the integrals in (3.3) and (3.4) . Then, we obtain that (3.3) is equal to 

e 2 d 
√ 

2(λ+ r)+ μ2 −rT 

[
−a 2 e 

(
μ−

√ 

2(λ+ r)+ μ2 

)
d 
N 

(
d − k + μT √ 

T 

)

−
∫ ∞ 

d 

a 2 
1 √ 

2 πT 
exp 

{ (
μ −

√ 

2(λ + r) + μ2 

)
z 1 − 1 

2 

(
−k + z 1 + μT √ 

T 

)2 
} 

dz 1 

] 

= e 2 d 
√ 

2(λ+ r)+ μ2 −rT 

[
−a 2 e 

(
μ−

√ 

2(λ+ r)+ μ2 

)
d 
N 

(
d − k + μT √ 

T 

)

−a 2 e 
(λ+ r) T + 

(
μ−

√ 

2(λ+ r)+ μ2 

)
k 
∫ ∞ 

d 

1 √ 

2 πT 
exp 

⎧ ⎨ 

⎩ 

−1 

2 

( 

z 1 − k + T 
√ 

2(λ + r) + μ2 

√ 

T 

) 2 
⎫ ⎬ 

⎭ 

dz 1 

⎤ 

⎦ 

= −e 2 d 
√ 

2(λ+ r)+ μ2 −rT 

[
a 2 e 

(
μ−

√ 

2(λ+ r)+ μ2 

)
d 
N 

(
d − k + μT √ 

T 

)

+ a 2 e 
(λ+ r) T + 

(
μ−

√ 

2(λ+ r)+ μ2 

)
k 

N 

( 

−d + k − T 
√ 

2(λ + r) + μ2 

√ 

T 

) ] 

and also (3.4) becomes 

e −rT a 1 e 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
d 
N 

(
d − k + μT √ 

T 

)

− e −rT a 1 e 
(λ+ r) T + 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
k 

N 

( 

d − k − T 
√ 

2(λ + r) + μ2 

√ 

T 

) 

. 

Collecting the terms, the proof is completed. 

�
As a special case, one can obtain the price for an option where the amount of A is paid if the asset price exceeds the

strike K at time τ + T , and the payoff is zero otherwise. By putting D = S 0 in Theorem 3.1 , we obtain the following result. 

Corollary 3.2. The value V 2 of a digital option which starts at exponential random time τ with parameter λ is 

V 2 = 

λA 

λ + r 
e −rT N 

(
d 1 − d √ 

T 

)

− Ae λT 

[
a 1 e 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
k 
N 

(
d 2 − d √ 

T 

)
+ a 2 e 

(
μ−

√ 

2(λ+ r)+ μ2 

)
k 
N 

(
d 2 + 

2 k − d √ 

T 

)]
. 

We next consider a barrier option of knock-out type followed by an additional option which pays out the amount of A

if the underlying asset price does not cross the barrier D in [0, τ ] and is greater than the strike price K at time τ + T . This

option pays off zero when the underlying asset price hits the barrier D or falls below the strike K at τ + T . 

Theorem 3.3. The value V 3 of a digital option connected with a down-and-out option which terminates at exponential random

time τ with parameter λ is 

V 3 = A 

[
λ

λ + r 
e −rT N 

(
d 1 − d √ 

T 

)
− a 1 e 

−r T + 
(
μ+ 

√ 

2(λ+ r )+ μ2 

)
d 
N(d 1 ) 

−a 1 e 
λT + 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
k 

{
N 

(
d 2 − d √ 

T 

)
− N ( d 2 ) 

}
− a 2 e 

λT + 
(
μ−

√ 

2(λ+ r)+ μ2 

)
k 
N 

(
d 2 + 

2 k − d √ 

T 

)]

+ A 

(
D 

S 0 

) 2 
σ

√ 

2(λ+ r)+ μ2 
[

a 2 e 
−r T + 

(
μ−

√ 

2(λ+ r )+ μ2 

)
d 
N(d 1 ) + a 2 e 

λT + 
(
μ−

√ 

2(λ+ r)+ μ2 

)
k 
N 

(
d 2 + 

2 k − 2 d √ 

T 

)]
where N ( · ) is the cumulative standard normal distribution function. 

Proof. The value V 3 of this contract is expressed as 

V 3 = E P 
[
e −r(τ+ T ) A 1 { m 

τ
0 
>d, S τ+ T >K} 

]
= A E P 

[
e −r(τ+ T ) 1 { X τ >d, X τ+ T >k } 

]
− A E P 

[
e −r(τ+ T ) 1 { m 

τ ≤d, X τ >d, X τ+ T >k } 
]

0 
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We use similar techniques used in the proof of Theorem 3.1 . Also note that a 1 − a 2 = 

λ
λ+ r . 

E P 
[
e −r(τ+ T ) 1 { X τ >d, X τ+ T >k } 

]
= 

∫ 0 

d 

λe −rT √ 

2(λ + r) + μ2 
e (μ+ 

√ 

2(λ+ r)+ μ2 ) z N 

(
−k + z + μT √ 

T 

)
dz 

+ 

∫ ∞ 

0 

λe −rT √ 

2(λ + r) + μ2 
e (μ−

√ 

2(λ+ r)+ μ2 ) z N 

(
−k + z + μT √ 

T 

)
dz 

= 

λ

λ + r 
e −rT N 

(
−k + μT √ 

T 

)
− e −rT a 1 e 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
d 

N 

(
d − k + μT √ 

T 

)

− a 1 e 
λT + 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
k 
N 

( 

−k − T 
√ 

2(λ + r) + μ2 

√ 

T 

) 

+ a 1 e 
λT + 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
k 

N 

( 

d − k − T 
√ 

2(λ + r) + μ2 

√ 

T 

) 

− a 2 e 
λT + 

(
μ−

√ 

2(λ+ r)+ μ2 

)
k 

N 

( 

k − T 
√ 

2(λ + r) + μ2 

√ 

T 

) 

. 

By combining with the terms for E P 
[ 

e −r(τ+ T ) 1 { m 

τ
0 
≤d, X τ >d, X τ+ T >k } 

] 
provided in the proof of Theorem 3.1 , the desired result is

achieved. 

�
Consider a financial contract paying the amount of A when the underlying asset price never falls to reach the barrier D

in [0, τ ] and is lower than the strike price K at time . The following formula is now obtained by using V 3 in Theorem 3.3 . 

Corollary 3.4. The value V 4 of a digital option connected with a down-and-out option which terminates at exponential random

time τ with parameter λ is given by 

V 4 = 

λA 

λ + r 
e −rT 

[
1 − e 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
d 

]
− V 3 . 

Proof. The value V 4 is 

V 4 = E P 
[
e −r(τ+ T ) A 1 { m 

τ
0 
>d, S τ+ T <K} 

]
= A E P 

[
e −r(τ+ T ) 1 { m 

τ
0 
>d, X τ+ T <k } 

]
= A E P 

[
e −r(τ+ T ) 1 { m 

τ
0 
>d} 

]
− A E P 

[
e −r(τ+ T ) 1 { m 

τ
0 
>d, X τ+ T ≥k } 

]
= A E P 

[
e −r(τ+ T ) (1 − 1 { m 

τ
0 
≤d} 

)]
− V 3 

= 

λA 

λ + r 
e −rT 

[
1 − e 

(
μ+ 

√ 

2(λ+ r)+ μ2 

)
d 

]
− V 3 . 

�
Fig. 1 shows how the value V 4 in Corollary 3.4 changes when λ varies from 0 to 2 and D varies from 80 to 100. The

parameter values that we used are S 0 = 100 , K = 80 , A = 10 6 , σ = 0 . 3 , r = 0 . 05 and T = 0 . 5 . 

If the exponential parameter λ is large, τ is more likely to be small. Then, the probability of the underlying asset falling to

reach the barrier D in the period [0, τ ] becomes small. Thus the option value V 4 with a barrier of knock-out type increases

as λ grows. Also, if the down barrier D takes the larger value, the option price V 4 with knock-out barrier is smaller, as

observed in Fig. 1 . This property is the same as that of the regular barrier option. 

Table 1 shows a comparison between the simulation results and the exact values from our pricing formula for different

values of λ and down barrier D . MC represents the results from Monte Carlo simulation using Antithetic Variates, the Vari-

ance Reduction Method of Monte Carlo simulation. The parameter values in this computation are S 0 = 100 , K = 100 , A =
1 , T = 1 , σ = 0 . 3 and r = 0 . 05 . Monte Carlo method requires much larger amount of computer time because a large number

of sample paths and exponential random times, and a large enough monitoring frequency must be needed in order to catch

the hitting times. For the Monte Carlo simulation results in Table 1 , a monitoring frequency is 10 0 0, the number of sample

paths is 10 0 0 0, and the number of exponential random times is 10 0 0 0. We note that the computation time of each value

for Monte Carlo simulation was a couple hours while our closed-form formula can be computed in less than a second. 
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Fig. 1. The value V 4 connected with a knock-out option when λ and down barrier D vary. 

Table 1 

Comparison of formula and Monte Carlo Simulation for V 1 
and V 4 

λ D V 1 V 4 

Formula MC Formula MC 

0 .5 70 0 .0550 0 .0525 0 .2345 0 .2344 

80 0 .1253 0 .1218 0 .1570 0 .1565 

90 0 .2484 0 .2424 0 .0767 0 .0763 

1 70 0 .0304 0 .0291 0 .3166 0 .3150 

80 0 .0894 0 .0871 0 .2297 0 .2295 

90 0 .2182 0 .2135 0 .1216 0 .1213 

2 70 0 .0135 0 .0138 0 .3881 0 .3902 

80 0 .0553 0 .0546 0 .3086 0 .3068 

90 0 .1772 0 .1739 0 .1807 0 .1806 

 

 

 

 

 

 

 

 

Note that the economic explanation for V 4 is provided in Section 2 . The economic (financial) explanations for V 1 , V 2 and

V 3 can be given as follows: For example, consider that a firm wants to buy a derivative to hedge risks for the rising price of

oil, which are triggered by natural catastrophes in a large oil-producing country. If the oil price is likely to decrease in the

short term, a barrier of knock-in type until the time of event can prevent the firm from paying extra premium. The pricing

formula V 1 for such an option is derived in Theorem 3.1 . As a special case, V 2 gives the pricing formula when the firm wants

this digital option contract without the feature of barrier monitoring. In a similar situation, V 3 provides the pricing formula

for this digital option contract linked with a knock-out barrier. 

If one might want to require, in addition to the conditions for V 4 , that the underlying asset price continuously decreases

and doesn’t exceed a barrier line for the period of [ τ, τ + T ] , we provide the following valuation formula. 

Theorem 3.5. The value V 5 of a digital option having a up-and-out barrier connected with a down-and-out option which termi-

nates at exponential random time τ with parameter λ is 

V 5 = V 4 − A 

(
U 

2 

DS 0 

) μ
σ

(a 1 − a 2 ) e 
−r T + d 

√ 

2(λ+ r )+ μ2 
N(d 3 ) 

+ Ae λT 
(

K 

S 0 

) μ
σ
[ 

a 1 e 
(−2 u +2 d+ k ) 

√ 

2(λ+ r)+ μ2 − a 2 e 
(2 u −k ) 

√ 

2(λ+ r)+ μ2 

] 
N(d 4 ) 

where 

d 3 = 

−2 u + d + k − μT √ 

T 
and d 4 = 

−d + 2 u − k − T 
√ 

2(λ + r) + μ2 

√ 

T 
. 
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Proof. The value V 5 can be calculated by essentially the same techniques as in the proofs of Theorem 3.1 and 3.3 . 

V 5 = E P 
[ 

e −r(τ+ T ) A 1 { m 

τ
0 
>d, S τ+ T <K, M 

τ+ T 
τ <u } 

] 
= A E P 

[
e −r(τ+ T ) 1 { m 

τ
0 
>d, X τ+ T <k } 

]
− A E P 

[ 
e −r(τ+ T ) 1 { m 

τ
0 
>d, X τ+ T <k, M 

τ+ T 
τ ≥u } 

] 
= V 4 − A E P 

[
e −r(τ+ T ) 1 { X τ >d, X τ+ T <k, M 

τ+ T 
τ ≥u } 

]
+ A E P 

[ 
e −r(τ+ T ) 1 { m 

τ
0 
≤d, X τ >d, X τ+ T <k, M 

τ+ T 
τ ≥u } 

] 

= V 4 − A 

(
U 

2 

DS 0 

) μ
σ

(a 1 − a 2 ) e 
−r T + d 

√ 

2(λ+ r )+ μ2 
N 

(
−2 u + d + k − μT √ 

T 

)

+ Ae λT 
(

K 

S 0 

) μ
σ
[ 

a 1 e 
(−2 u +2 d+ k ) 

√ 

2(λ+ r)+ μ2 − a 2 e 
(2 u −k ) 

√ 

2(λ+ r)+ μ2 

] 
× N 

( 

−d + 2 u − k − T 
√ 

2(λ + r) + μ2 

√ 

T 

) 

. 

�

Remark 3.6. The pricing formulas derived in this section remain the same at any time t < τ due to the memoryless property

of exponential distribution. 

4. Conclusions 

This paper considers derivatives to hedge financial risk that may arise randomly. It is difficult to hedge exposure to

catastrophe loss by using derivative securities with fixed time horizon. With this motivation, derivatives that terminate or

initiate at random times are needed in practice. In this paper, we derive closed-form valuation formulas for options which

initiate at a random time with exponential distribution and contain knock-in or knock-out barriers for asset monitoring in

advance. Due to this contribution, financial institutions have benefits from this research to utilize and price such products

easily. 
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