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This paper concerns American barrier options with two barriers. Standard American 
Options are difficult to price but there exist good numerical or analytical 
approximation methods. The situation is different for American barrier options. 
These options cease to exist or come into being if some price barrier is hit during 
the option’s life. The paper studies analytic valuation of American barrier options 
with two barriers where the barriers become active by turns. In this paper, analytic 
valuation formulas for these options are derived by using both constant and 
exponential barriers for optimal early exercise policies.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Barrier options are widely used by institutional investors, banks and corporations in their risk manage-
ment, and American-style options give their holders the additional flexibility of early exercise. Because a 
wide variety of traded options are American options, the problem of valuing American options has been an 
important topic in financial economics.

The first approach to valuing American options, proposed by Brennan and Schwartz [3] and Parkin-
son [26], was a direct numerical evaluation of the Black–Scholes partial differential equation using finite 
differences. Cox, Ross and Rubinstein [8] used the binomial model to reduce the size of errors by refining 
the time partition so that the resulting lattice has layers as close as possible to the barrier. These numerical 
methods are quite flexible and simple to implement. However, even after employing enhancement techniques 
such as control variates or convergence extrapolation, they are very time consuming.

There are many approximation schemes developed to reduce this time consuming task. Johnson [17] ex-
pressed the put value as an approximate function of its parameters. Geske and Johnson [11] approximated 
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the American option price through an infinite series of multivariate normal distribution functions. Barone-
Adesi and Whaley [1] used Merton’s [25] solution for perpetual American options and the quadratic method 
of MacMillan [24]. Despite its high efficiency and the accuracy improvements, this method is not convergent 
because there is no control parameter to adjust to improve the accuracy.

Longstaff and Schwartz [23] adapted Monte Carlo simulation methods to deal with the American 
put problem. They addressed the optimal stopping problem in a Monte Carlo framework by comparing 
the conditional expected value of continuing with the value of immediate exercise if the option is cur-
rently in the money. Their method is based on a polynomial approximation of the continuation value, 
leading to an approximate free boundary. Sullivan [27] approximated the option value function through 
Chebyshev polynomials and employed a Gaussian quadrature integration scheme at each discrete exercise 
date. Although the speed and accuracy of the proposed numerical approximation can be enhanced via 
the Richardson extrapolation, its convergence properties are still unknown. Carr and Madan [6] showed 
how the fast Fourier Transform may be used to value options when the characteristic function of the 
return is known analytically. Belomestny et al. [2] proposed a novel approach to reduce the compu-
tational complexity of the dual method for pricing American options. They considered a sequence of 
martingales that converges to a given target martingale and decompose the original dual representation 
into a sum of representations that correspond to different levels of approximation to the target martin-
gale.

Another stream of the American option pricing literature is to derive lower and upper bounds for Amer-
ican option values. Kim [22], Jacka [16], and Carr et al. [5] obtained an analytic integral-form solution for 
American options where the formulas represent the early premium of an American option as an integral 
which has the early exercise boundary. Broadie and Detemple [4] provided tight lower and upper bounds 
for American call prices based on the assumption that the early exercise boundary is a constant. Ju [18]
approximated the early exercise boundary as a multipiece exponential function and substituted it by the 
early exercise premium integral, derived by Kim [22], to price American options. Ingersoll [14] described 
another approximation method of American options based on barrier derivatives: The exercise policy is 
approximated by a simple class of functions, and the best policy within that class is selected by stan-
dard optimization techniques. The advantages of this method are its simplicity and speed, even when used 
in general-purpose computer programs such as spreadsheets. Concretely, he dealt with a constant barrier 
approximation and an exponential barrier approximation for American put. Chung et al. [7] derived the 
essential formulas for solving the lower bound and the optimal exercise boundary.

For the American barrier option problem, Gao et al. [10] suggested an approximation method for Amer-
ican barrier options. They applied the approximation techniques of a standard American option to an 
American barrier option, and proposed two approximation methods using [13] and [18] to approximate an 
American barrier’s exercise boundary. Dai and Kwok [9] provided an analytic formula for knock-in options 
and showed that the in–out barrier parity relationship for American barrier options could not be obtained 
unlike the case of European barrier options. Zhang et al. [28] presented the total least squares quasi-
Monte Carlo approach for valuing American barrier options, which modifies the least-squares Monte Carlo 
method.

Ingersoll [14] presented American up-and-in put by an approximation method based on barrier options 
with constant exercise policies. He also suggested the use of an exponential function to approximate the 
early exercise boundary. Jun and Ku [21] provided analytic valuation formulas of American partial barrier 
options in terms of a finite sum of bivariate normal distribution functions.

To the best of our knowledge, there are no papers about American barrier options with two barriers. 
The main contribution of our study is that we are the first to study a barrier option of American type with 
two barriers and derive an analytic valuation formula. There are two classes of barrier options with two 
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barriers. One is double barrier options and the other is chained options.1 Chained options differ from double 
barrier options in the sense that the other barrier does not exist until one barrier is hit according to their 
predetermined order. This paper investigates chained options of American type where an American barrier 
option is commenced at a time when the specified barrier is crossed before maturity. This paper extends the 
approximation method of American barrier option in Ingersoll [14] to the case of chained options of American 
type with two barriers, and derives the analytic formulas for such options. Consistent with intuition, when 
the first barrier of an American chained barrier option approaches the initial underlying asset price, the 
value of the American chained barrier option with two barriers converges to the American barrier option 
value with a single barrier (the second barrier of the two). Both constant and exponential functions are 
considered for early exercise boundaries in valuing chained option of American type. Our explicit formulas 
provide a very tight lower bound for the option price, and moreover, this method is superior in speed and 
its simplicity.

This article is organized as follows. Section 2 provides the valuation formulas for an American up-and-in 
put option which is activated at a first passage time to down-barrier D. This approximation method is 
based on barrier options along with constant early exercise policies. Section 3 treats the exponential exercise 
barriers case. Section 4 presents some conclusions.

2. Approximation of American chained option by constant barriers

Let r be the risk-free interest rate, q be a dividend rate, and σ > 0 be a constant. We assume the price 
of the underlying asset S follows a geometric Brownian motion

St = S0 exp(μt + σWt)

where μ = r − q − σ2

2 and Wt is a standard Brownian motion under the risk-neutral probability P .
In this section, we consider chained options of American type. American options give their holders the 

flexibility of early exercise. An American up-and-in put option can be exercised before the expiration time 
when it is in the money, but only after the stock price rises above the knock-in barrier. We consider the 
up-and-in put commencing at a time when the asset price hits the down-barrier D. This option can be 
exercised before the expiration time T by the option holder, but only after the underlying asset falls below 
D and then rises above U before time T . The payoff of this option is zero otherwise.

In order to obtain the approximation to valuing American chained option using barrier derivatives under 
exercise policies, it will be convenient to introduce the following digitals: Let D(S, t; A) be the value at time 
t of receiving one dollar at time T if and only if the event A occurs, and DS(S, t; A) be the value at time 
t of receiving one share of stock at time T if and only if the event A occurs. The D is said to be a digital 
or binary option and the DS is said to be a digital share. The quantity E(S, t, Kτ ; A) denotes the value at 
time t of payment X −Kτ at the first time τ that the stock price S hits the barrier Kτ provided the event 
A occurs before time T , where X is a strike price. The E is said to be a first-touch digital.

First we present a brief review of the results in [14]. Consider an American up-and-in put expiring T with 
strike price X. Let us denote by U the up-barrier and by K∗

t the optimal exercise policy. Let τB1 denote 
the first time the stock price is equal to B1 and τB1B2 denote the first time after τB1 that the stock price is 
equal to B2.

1 For chained options, another barrier option is activated when a primary barrier is hit. For example, an up-and-in chained put 
option (UIPd) is an up-and-in put option activated at a time when the underlying asset price hits a lower barrier level, D, and 
an up-and-in chained put option (UIPud) is an up-and-in put option which is activated at a time when the asset price crosses 
two different barrier levels (an up-barrier followed by a down-barrier). These options have become popular in the over-the-counter 
equity and foreign exchange derivative markets. We refer to Jun and Ku [19,20] for details.
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Let A1 = {t < τU < T, τUK∗ > T, ST < X} be the event of exercise at maturity under the optimal 
policy, and A2 = {t < τU , τUK∗ < T} be the event of early exercise under the optimal policy. Then the 
value of the up-and-in put can be written as

UIP = X · D(S, t;A1) −DS(S, t;A1) + E
(
S, t,K∗

t ;A2
)
.

The barrier approximation for this put takes the maximum value within a class of restricted policies. For 
example, for constant exercise policies k,

UIP ≥ UIPconst = max
k

[
X · D

(
S, t;A′

1
)
− S

(
S, t;A′

1
)

+ E
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S, t, k;A′

2
)]

where A′
1 = {t < τU < T, τUk > T, ST < X}, A′

2 = {t < τU , τUk < T}, and τUk is the first time the stock 
price hits the constant policy barrier k after hitting the barrier U .

The values for these digitals are given by
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where N is the standard normal distribution function,

h1(z) = ln z + μ(T − t)
σ
√
T − t

, h2(z) = ln z + μ(T − t)
σ
√
T − t

, g1(z) = ln z + βσ2(T − t)
σ
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T − t

μ = r − q − 1
2σ

2, μ = r − q + 1
2σ

2, b = μ

σ2 , and β =
√
b2 + 2r

σ2 .

Now, we present the valuation of American chained option using barrier derivatives. Let K∗ denote the 
optimal exercise policy. We denote by τD the first time that the underlying asset reaches the barrier D. 
By τDU and τDUK∗ , we denote the first time that the underlying asset rises to the barrier U after τD and 
the first time that the underlying asset falls to the optimal exercise policy K∗ after τDU respectively. Let 
A3 = {t < τD, τDU < T, τDUK∗ > T, ST < X} be the event of exercise at maturity under the optimal 
policy, and A4 = {t < τD, τDU , τDUK∗ < T} be the event of early exercise under the optimal policy.

Then the value of an American up-and-in put commencing at the first passage time to barrier D is written 
as

UIPd = XD(S, t;A3) −DS(S, t;A3) + E
(
S, t,K∗

t ;A4
)
.
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For the barrier approximation of this option, we consider a class of all constant exercise policies. We let 
A5 = {t < τD, τDU < T, τDUk > T, ST < X} be the event of exercise at maturity under a constant 
policy k, and A6 = {t < τD, τDUk < T} be the event of early exercise under policy k. Then we can express 
the option price as

UIPd const = max
k∈Kc

[
X · D(S, t;A5) −DS(S, t;A5) + E(S, t, k;A6)

]
. (2.1)

If the set of policies considered contains all continuous functions, then the resulting put value will be 
exact. Since the set Kc is the set of all constant functions, then the resulting value will be an approximation 
providing a (very tight) lower bound to the put price.

We first present the digital options for an American up-and-in put option starting at the hitting time of 
barrier D under constant exercise policies.

Theorem 2.1. The values of a digital option and a digital share at time t for the event A5 = {t < τD, τDU <

T, τDUk > T, ST < X} are
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where N is the standard normal distribution function,
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Proof. Apply Lemma A.3 with letting u = 1
σ ln U

St
, d = 1

σ ln D
St

, l = 1
σ ln k

St
, and x = 1

σ ln X
St

to derive the 
risk-neutral probability of exercise at maturity. We note that N(x) −N(y) = N(−y) −N(−x). Then
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Then the value of the digital option D(S, t; A5) at time t is

D(S, t;A5) = e−r(T−t)P (t < τD, τDU < T, τDUk > T, ST < X).

Also, the digital share DS(S, t; A5) can be valued by changing μ to μ = r− q + 1
2σ

2 in h1 and replacing the 
discount factor e−r(T−t) by Ste

−q(T−t). (See for example [15].) �
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Theorem 2.2. The value of the first-touch digital for the event A6 is
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Proof. When the stock pays dividends, the asset price follows the continuous diffusion process dSt =
(r − q)Stdt + σStdWt. To eliminate the dividend term in the process, we set

Vt = Sβ−b
t

where

b = μ

σ2 and β =
√

b2 + 2r
σ2 . (2.2)

Then, by Ito’s lemma,

dVt = rVtdt + (β − b)σVtdWt. (2.3)

We may apply Lemma A.5 to the process Vt, since (2.3) does not contain the dividend term. The barriers 
for Vt corresponding to U , D, and k are Uβ−b, Dβ−b, and kβ−b respectively. Furthermore, the volatility σ
is replaced by (β − b)σ. Then, the value of the first-touch digital for the event A6 is
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Table 1
Comparison of American chained put option values UIPd const with varying S0 and strike price X.

S0 X V (10) V (30) V (50) V (100) V (500) MC k∗

96 95 1.5138 1.5155 1.5161 1.5161 1.5162 1.5188 78.22
97.5 1.9478 1.9486 1.9503 1.9503 1.9503 1.9699 79.80

100 2.4647 2.4647 2.4670 2.4670 2.4671 2.4400 81.72
102.5 3.0712 3.0712 3.0729 3.0732 3.0734 3.0531 83.44
105 3.7730 3.7730 3.7731 3.7747 3.7747 3.7686 85.14

98 95 1.2554 1.2573 1.2574 1.2575 1.2576 1.2600 78.46
97.5 1.6292 1.6309 1.6316 1.6316 1.6317 1.6418 80.22

100 2.0787 2.0793 2.0812 2.0812 2.0812 2.0604 81.97
102.5 2.6107 2.6107 2.6130 2.6130 2.6132 2.6260 83.70
105 3.2315 3.2315 3.2330 3.2335 3.2336 3.2050 85.43

100 95 1.0379 1.0399 1.0397 1.0400 1.0400 1.0522 78.70
97.5 1.3587 1.3606 1.3609 1.3609 1.3610 1.3698 80.46

100 1.7478 1.7493 1.7503 1.7503 1.7503 1.7632 82.22
102.5 2.2125 2.2128 2.2150 2.2150 2.2150 2.2426 83.97
105 2.7591 2.7591 2.7614 2.7614 2.7616 2.7339 85.70

102 95 0.8557 0.8575 0.8573 0.8576 0.8576 0.8714 78.90
97.5 1.1298 1.1318 1.1317 1.1319 1.1320 1.1463 80.68

100 1.4653 1.4672 1.4676 1.4676 1.4677 1.4624 82.46
102.5 1.8694 1.8708 1.8720 1.8720 1.8720 1.8939 84.21
105 2.3488 2.3489 2.3514 2.3514 2.3515 2.3535 85.95

104 95 0.7036 0.7053 0.7051 0.7052 0.7053 0.7164 79.10
97.5 0.9369 0.9388 0.9386 0.9389 0.9389 0.9482 80.90

100 1.2251 1.2271 1.2271 1.2273 1.2273 1.2218 82.68
102.5 1.5751 1.5770 1.5776 1.5776 1.5777 1.5634 84.45
105 1.9939 1.9951 1.9966 1.9966 1.9966 2.0296 86.21

Option parameters: U = 105, D = 95, σ = 0.3, T = 0.5, r = 0.05, q = 0. V (N) is an option value of UIPd const using the formulas
in (2.1). N is the number of constant policy barriers which are evenly spaced from 0 to 100. MC is a result of simulation using the 
Antithetic Variates, a Variance Reduction Method of Monte Carlo simulation. k∗ is the optimal policy barrier for V (10 000).

We next present some numerical results to examine the accuracy of our solution. We compute the values 
of American chained option by our formula (2.1) and compare them with those by popular Monte Carlo 
method with an Antithetic Variate. (See for example [12].)

Table 1 shows the values of American up-and-in put option which is activated at time when barrier D
is hit with varying initial price S0 and strike price X. The parameter values that we used are U = 105, 
D = 95, σ = 0.3, T = 0.5, r = 0.05, q = 0. The values of S0 vary from 96 to 104 and the values of X from 
95 to 105. Table 2 shows the values of American up-and-in put option with varying levels of upper barrier 
U and down barrier D. The parameter values used are S0 = 100, X = 100, σ = 0.3, T = 0.5, r = 0.05, 
q = 0. The values of U vary from 101 to 109 and the values of D from 91 to 99.

V (N) is an option value of UIPd const using barrier options with constant policy barriers in (2.1). N is 
the element number of constant policy set Kc to seek the best policy where policies are evenly spaced from 0 
to X = 100. Since the American up-and-in put option comes into action only if the down-barrier is hit first, 
the option price UIPd const decreases as the initial stock price gets farther apart from the down-barrier D. 
We notice that as the element number N of constant policy set increases, the option value V (N) increases 
concavely. In other words, it converges to a constant quickly as N becomes large.

MC is a result of simulation using the Antithetic Variates, a Variance Reduction Method of Monte Carlo 
simulation. For the American chained barrier option using policy barriers, Monte Carlo method requires 
much larger amount of computer time because a large number of sample paths and policy barriers, and a 
large enough monitoring frequency must be needed in order to catch the hitting times. For the Monte Carlo 
approximation in Table 1, the computer time is more than 10 000 times as long as for our formulas method 
to obtain the similar results under the same policy numbers. For the MC results in Table 1 and Table 2, 
a monitoring frequency is 1000, the number of sample paths is 1000, and the number of policy barriers 
(evenly spaced from 0 to 100) is 100.
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Table 2
Comparison of American chained put option values UIPd const with varying U and D.

U D V (10) V (30) V (50) V (100) V (500) MC k∗

101 91 1.6245 1.6263 1.6270 1.6270 1.6270 1.6456 82.32
93 2.3484 2.3484 2.3508 2.3508 2.3508 2.3232 81.79
95 3.2735 3.2735 3.2745 3.2754 3.2754 3.2221 81.24
97 4.4141 4.4141 4.4141 4.4148 4.4149 4.3007 80.69
99 5.7743 5.7743 5.7743 5.7743 5.7743 5.5791 80.12

103 91 1.1351 1.1371 1.1371 1.1373 1.1373 1.1600 82.78
93 1.6865 1.6882 1.6890 1.6890 1.6891 1.6780 82.27
95 2.4128 2.4128 2.4152 2.4152 2.4152 2.4029 81.75
97 3.3340 3.3340 3.3348 3.3358 3.3358 3.2997 81.21
99 4.4628 4.4628 4.4628 4.4634 4.4636 4.4202 80.67

105 91 0.7790 0.7808 0.7806 0.7808 0.7808 0.8034 83.21
93 1.1900 1.1921 1.1921 1.1922 1.1923 1.1694 82.72
95 1.7478 1.7493 1.7503 1.7503 1.7503 1.7632 82.22
97 2.4759 2.4759 2.4782 2.4782 2.4783 2.4800 81.71
99 3.3928 3.3928 3.3935 3.3946 3.3946 3.4294 81.18

107 91 0.5254 0.5268 0.5267 0.5267 0.5268 0.5506 83.62
93 0.8254 0.8272 0.8270 0.8272 0.8272 0.8389 83.15
95 1.2448 1.2469 1.2469 1.2471 1.2471 1.2648 82.67
97 1.8083 1.8097 1.8108 1.8108 1.8108 1.8144 82.17
99 2.5377 2.5377 2.5400 2.5400 2.5401 2.5248 81.67

109 91 0.3485 0.3494 0.3494 0.3494 0.3494 0.3802 84.01
93 0.5629 0.5644 0.5643 0.5643 0.5644 0.5937 83.55
95 0.8720 0.8739 0.8736 0.8739 0.8739 0.9034 83.09
97 1.2994 1.3014 1.3015 1.3016 1.3017 1.3057 82.61
99 1.8680 1.8693 1.8706 1.8706 1.8706 1.8706 82.13

Option parameters: S0 = 100, X = 100, σ = 0.3, T = 0.5, r = 0.05, q = 0. V (N) is an option value of UIPd const using the formulas
in (2.1). N is the number of constant policy barriers which are evenly spaced from 0 to 100. MC is a result of simulation using the 
Antithetic Variates, a Variance Reduction Method of Monte Carlo simulation. k∗ is the optimal policy barrier for V (10 000).

We note that the last column k∗ is the optimal policy barrier when N = 10 000, and the best constant 
policy depends, of course, on option parameters such as initial stock price, strike price, upper barrier, and 
lower barrier.

Remark 2.3. When the barrier D approaches to the current stock price St, it can be checked that the 
formulas for D, DS and E become the values of these digitals for the regular American barrier option given 
in this section.

3. Approximation of American chained option by exponential barriers

In this section, we present the valuation formulas to approximate an American chained option under 
exponential policy barriers. The barrier approximation method can be improved by using an expansive 
class of functions for exercise policies. We consider the class of exercise policies, Ke, is a set of exponential 
functions whose elements are in the form of Kt = K0e

δt with constant K0 and δ ≥ 0. Since options with 
exponential barriers have analytical solutions under Black–Scholes conditions, an exponential barrier is a 
natural choice. Let A7 = {t < τD, τDU < T, τDUKt

> T, ST < X} be the event of exercise at maturity 
under an exponential policy barrier Kt and A8 = {t < τD, τDUKt

< T} be the event of early exercise under 
policy Kt. Then, the American up-and-in put option activated at time when barrier D is hit is approximated 
under exponential policy barriers as

UIPd exp = max
Kt∈Ke

[
X · D(S, t;A7) −DS(S, t;A7) + E(S, t,Kt;A8)

]
.
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Theorem 3.1. The values of a digital option and a digital share at time t for the event A7 = {t < τD, τDU <

T, τDUKt
> T, ST < X} are

D(S, t;A7) = e−r(T−t)
(
U

D

) 2μ
σ2
[
N

(
h4

(
U2St

D2Kt

))
−N

(
h1

(
U2St

D2X

))]

+ e−r(T−t)
(
DKt

USt

) 2μ
σ2
(

U2St

D2Kt

) 2δ
σ2
[
N

(
h1

(
D2K2

t

U2StX

))
−N

(
h4

(
D2Kt

U2St

))]
,

DS(S, t;A7) = Ste
−q(T−t)

(
U

D

) 2μ
σ2
[
N

(
h5

(
U2St

D2Kt

))
−N

(
h2

(
U2St

D2X

))]

+ Ste
−q(T−t)

(
DKt

USt

) 2μ
σ2
(

U2St

D2Kt

) 2δ
σ2
[
N

(
h2

(
D2K2

t

U2StX

))
−N

(
h5

(
D2Kt

U2St

))]

where

h4(z) = ln z + (μ− δ)(T − t)
σ
√
T − t

and h5(z) = ln z + (μ− δ)(T − t)
σ
√
T − t

.

Remark 3.2. If the barrier grows exponentially at rate δ, the drift of St, μ, and the strike price X can be 
considered as μ − δ and Xe−δT respectively, for a constant barrier. Therefore, the function h4 appears in 
the above formula, and the terms which depend on X still use h1 since the changing barrier effects cancel. 
However, we note that for chained options, exponential barrier appears only after both barriers U and D
are hit, and thus just replacing the drift does not lead to the formulas in Theorem 3.1.

Proof of Theorem 3.1. Let kt = k0 + δ
σ t where k0 and δ ≥ 0 are constants. We first consider the probability 

that the process Xt falls below d, and then rises above u, and then does not hit kt before time T , and its 
value at time T is less than x.

P (τdu < T, τdukt
> T, XT ≤ x | X0 = 0)

= P (τdu < T, XT ≤ x | X0 = 0) − P (τdukt
≤ T | X0 = 0)

+ P (τdukt
≤ T, XT > x | X0 = 0) (3.1)

The last term in (3.1) can be calculated as in the proof of Lemma A.1. Since d and u are constants,

P (τdukt
≤ T, XT > x | X0 = 0)

= exp
(

2μ
σ

(u− d)
)
P (τkt

≤ T, XT > x | X0 = 2u− 2d).

Let Xt − δ
σ t = X̃t. Then the drift of X̃t is μ−δ

σ and

P (τkt
≤ T, XT > x | X0 = 2u− 2d)

= P

(
τ̃k0 ≤ T, X̃T > x− δ

σ
T | X̃0 = 2u− 2d

)

= exp
(

2(μ− δ)
σ

(k0 − 2u + 2d)
)
P

(
X̃T > x− δ

σ
T | X̃0 = 2k0 − 2u + 2d

)

= exp
(

2(μ− δ) (k0 − 2u + 2d)
)
N

(2k0 − 2u + 2d− x + μ
σT√

)
.

σ T
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Thus,

P (τdukt
≤ T, XT > x | X0 = 0)

= exp
(

2μ
σ

(k0 − u + d)
)

exp
(

2δ
σ

(2u− 2d− k0)
)
N

(2k0 − 2u + 2d− x + μ
σT√

T

)
. (3.2)

The first two terms in (3.1) can be calculated by using the proof of Lemma A.2 for the process X̃t. Therefore,

P (τdu < T, τdukt
> T, XT ≤ x | X0 = 0)

= exp
(

2μ
σ

(u− d)
)[

N

(
x− 2u + 2d− μ

σT√
T

)
−N

(
k0 − 2u + 2d− (μ−δ

σ )T√
T

)]

+ exp
(

2μ
σ

(k0 − u + d)
)

exp
(

2δ
σ

(2u− 2d− k0)
)

×
[
N

(2k0 − 2u + 2d− x + μ
σT√

T

)
−N

(
k0 − 2u + 2d + (μ−δ

σ )T√
T

)]
.

We set u = 1
σ ln U

St
, d = 1

σ ln D
St

, kt = 1
σ ln Kt

St
= 1

σ ln(K0e
δt

St
), and x = 1

σ ln X
St

to derive the risk-neutral 
probability of exercise at maturity.

P (t < τDU < T, τDUKt
> T, ST < X | St)

=
(
U

D

) 2μ
σ2
[
N

(
h4

(
U2St

D2Kt

))
−N

(
h1

(
U2St

D2X

))]

+
(
DKt

USt

) 2μ
σ2
(

U2St

D2Kt

) 2δ
σ2
[
N

(
h1

(
D2K2

t

U2StX

))
−N

(
h4

(
D2Kt

U2St

))]

where

h4(z) = ln z + (μ− δ)(T − t)
σ
√
T − t

.

As a result, the values of D(S, t; A7) and DS(S, t; A7) are obtained. �
Theorem 3.3. The value of a first-touch digital for the event A8 = {t < τD, τDUKt

< T} is

E(S, t,Kt;A8) = X

[(
D

U

)β−b(
DKt

USt

)β+b(
U2St

D2Kt

) 2δ
(β−b)σ2

N

(
g2

(
D2Kt

U2St

))

+
(

USt

DKt

)β−b(
U

D

)β+b

N

(
−g2

(
U2St

D2Kt

))]

−Kt

[(
D

U

)β1−b1(DKt

USt

)β1+b1( U2St

D2Kt

) 2δ
(β1−b1)σ2

N

(
g3

(
D2Kt

U2St

))

+
(

USt

DKt

)β1−b1(U

D

)β1+b1

N

(
−g3

(
U2St

D2Kt

))]

where
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b1 = μ− δ

σ2 , β1 =
√
b21 + 2(r − δ)

σ2 , g2(z) =
ln z + (βσ2 − δ

β−b )(T − t)
σ
√
T − t

, and

g3(z) =
ln z + (β1σ

2 − δ
β1−b1

)(T − t)
σ
√
T − t

.

Proof. We consider the first-touch digital with a barrier of K0e
δt and a barrier payment of X −K0e

δt at 
hitting time.

P (τdukt
≤ T | X0 = 0)

= P (τdukt
≤ T,XT > kT | X0 = 0) + P (τdukt

≤ T,XT ≤ kT | X0 = 0) (3.3)

where kt = k0 + δ
σ t with constant k0 and δ ≥ 0. The first term in (3.3) is obtained from (3.2), i.e.,

P (τdukt
≤ T,XT > kT | X0 = 0)

= exp
(

2μ
σ

(k0 − u + d)
)

exp
(

2δ
σ

(2u− 2d− k0)
)
N

(
k0 − 2u + 2d + (μ−δ

σ )T√
T

)
.

Also, the second term in (3.3) is computed as

P (τdukt
≤ T,XT ≤ kT | X0 = 0) = P (τdu ≤ T,XT ≤ kT | X0 = 0)

= exp
(

2μ
σ

(u− d)
)
P (XT ≤ kT | X0 = 2u− 2d)

= exp
(

2μ
σ

(u− d)
)
N

(
k0 − 2u + 2d− (μ−δ

σ )T√
T

)
.

Therefore

P (τdukt
≤ T | X0 = 0)

= exp
(

2μ
σ

(u− d)
)
N

(
k0 − 2u + 2d− (μ−δ

σ )T√
T

)

+ exp
(

2μ
σ

(k0 − u + d)
)

exp
(

2δ
σ

(2u− 2d− k0)
)
N

(
k0 − 2u + 2d + (μ−δ

σ )T√
T

)
.

Let u = 1
σ ln U

St
, d = 1

σ ln D
St

, kt = 1
σ ln Kt

St
= 1

σ ln(K0e
δt

St
), and x = 1

σ ln X
St

. Then the substitution leads to

P (t < τD, τDUKt
≤ T | St)

=
(
U

D

) 2μ
σ2

N

(
−h4

(
U2St

D2Kt

))
+
(
DKt

USt

) 2μ
σ2
(

U2St

D2Kt

) 2δ
σ2

N

(
h4

(
D2Kt

U2St

))
.

The value of digital share DS(S, t; A8) at time t is

DS(S, t;A8)

= Ste
−q(T−t)

[(
U

D

) 2μ
σ2

N

(
−h5

(
U2St

D2Kt

))
+
(
DKt

USt

) 2μ
σ2
(

U2St

D2Kt

) 2δ
σ2

N

(
h5

(
D2Kt

U2St

))]

where

h5(z) = ln z + (μ− δ)(T − t)√ .

σ T − t
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If the stock does not pay dividends,

DS(S, t;A8)

= St

[(
U

D

) 2r
σ2 +1

N

(
−h6

(
U2St

D2Kt

))
+

(
DKt

USt

) 2r
σ2 +1(

U2St

D2Kt

) 2δ
σ2

N

(
h6

(
D2Kt

U2St

))]

where

h6(z) =
ln z + (r − δ + 1

2σ
2)(T − t)

σ
√
T − t

.

The value of payment X − Kt at time τDUKt
is equal to X−Kt

Kt
DS(S, t; A8) in the case of no-dividends. 

Calculate this value by dividing into two parts, one with X and the other with Kt = K0e
δt at the barrier 

hitting time, that is,

E(S, t,Kt;A8) = X

(
St

Kt

)[(
U

D

) 2r
σ2 +1

N

(
−h6

(
U2St

D2Kt

))

+
(
DKt

USt

) 2r
σ2 +1(

U2St

D2Kt

) 2δ
σ2

N

(
h6

(
D2Kt

U2St

))]

−Kt

(
St

Kt

)[(
U

D

) 2r
σ2 +1

N

(
−h6

(
U2St

D2Kt

))

+
(
DKt

USt

) 2r
σ2 +1(

U2St

D2Kt

) 2δ
σ2

N

(
h6

(
D2Kt

U2St

))]
.

When the stock pays dividends, as in Theorem 2.2, we adopt Vt to get rid of the dividend term. In order 
to calculate the first term with constant payment X, we set Vt = Sβ−b

t where b and β are defined in (2.2). 
For the second term with exponential payment Kt, we note when a payment grows exponentially at rate δ, 
discounting the payment at the interest rate r is equivalent to discounting a constant payment at the rate 
r − δ, therefore, set

Vt = Sβ1−b1
t

where

b1 = μ− δ

σ2 , β1 =
√

b21 + 2(r − δ)
σ2 .

The value of a first-touch digital for the event A8 is now obtained by following a procedure essentially 
identical to the proof of Theorem 2.2. �
4. Conclusion

This paper studies the valuation problem of American barrier option with two barriers. Because a wide 
variety of traded options are American type, the problem of valuing American options has been an important 
topic in financial economics. Standard American Options are difficult to price but there exist good numerical 
or analytical approximation methods. The situation is different for American barrier options. Even, to the 
best of our knowledge, the literature suggests no approximation formula for American options with two 
barriers. This paper investigates American barrier options in which two barriers become active alternately. 
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The analytic valuation formulas for these options are derived by the barrier approximation method under 
both constant and exponential exercise policies. Our formulas provide a good approximation for the option 
price in a simple and speedy way.

Appendix A

Let Xt = 1
σ ln( St

S0
) and Em be the expectation operator under the m-measure. Then Xt is a Brownian 

motion with drift μ
σ . Define τd, τdu, and τdul by stopping times for this process defined as the first time 

that Xt = d < X0, the first time after τd that Xt = u > d, and the first time after τdu that Xt = l < u

respectively.

Lemma A.1. For x ≥ l

P (τdul ≤ T, XT > x | X0 = 0)

= exp
(

2μ
σ

(l − u + d)
)
N

(2l − 2u + 2d− x + μ
σT√

T

)
.

Proof. The event τdul ≤ T is the event that the process Xt falls below d, and then rises above u, and then 
falls below l before time T . We utilize the reflection principle which reflects the early portion of path prior 
to its first touch at barriers with respect to the barriers. First, we reflect the original path with respect to d.

The process Xt = Wt + μ
σ t is a standard Brownian motion under the measure Q defined by

dQ

dP
= exp

[
−μ

σ
WT − 1

2

(
μ

σ

)2

T

]
.

Let us introduce a process X̃t, t ∈ [0, T ], defined by the formula

X̃t =
{

2d−Xt (t ≤ τd)
Xt (t > τd).

The reflected path in Fig. 1 shows this process. Then

P (τdul ≤ T, XT > x | X0 = 0)

= EQ

[
dP

dQ
1{τdul≤T, XT>x} | X0 = 0

]

= EQ
[
e

μ
σXT− 1

2
μ2
σ2 T1{τdul≤T, XT>x} | X0 = 0

]
= EQ

[
e

μ
σ X̃T− 1

2
μ2
σ2 T1{τul≤T, X̃T>x} | X̃0 = 2d

]
= exp

(
2μd
σ

)
P (τul ≤ T, XT > x | X0 = 2d).

We reflect this reflected path before its first touch at u again.

exp
(

2μd
σ

)
P (τul ≤ T, XT > x | X0 = 2d)

= exp
(

2μ (u− d)
)
P (τl ≤ T, XT > x | X0 = 2u− 2d).
σ
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Fig. 1. An illustration of paths using a triple reflection.

We reflect this doubly reflected path before its first touch at l once more. As a result,

P (τdul ≤ T, XT > x | X0 = 0)

= exp
(

2μ
σ

(l − u + d)
)
P (XT > x | X0 = 2l − 2u + 2d)

= exp
(

2μ
σ

(l − u + d)
)
N

(2l − 2u + 2d− x + μ
σT√

T

)
. �

Lemma A.2. The probability that the process Xt falls below d, and then rises above u, and then falls below 
l before time T is

P (τdul ≤ T | X0 = 0) = exp
(

2μ
σ

(l − u + d)
)
N

(
l − 2u + 2d + μ

σT√
T

)

+ exp
(

2μ
σ

(u− d)
)
N

(
l − 2u + 2d− μ

σT√
T

)
.

Proof. We note that

P (τdul ≤ T | X0 = 0)

= P (τdul ≤ T, XT > l | X0 = 0) + P (τdu ≤ T, XT ≤ l | X0 = 0)

since {τdul ≤ T, XT ≤ l} = {τdu ≤ T, XT ≤ l}. The first probability of the right-hand side is given 
by Lemma A.1 with x = l and the second one can be calculated by a similar method to the proof of 
Lemma A.1. Then we have

P (τdul ≤ T | X0 = 0)

= exp
(

2μ
σ

(d− u + l)
)
N

(
l − 2u + 2d + μ

σT√
T

)

+ exp
(

2μd + 2μ (u− 2d)
)
P (XT ≤ l | X0 = 2u− 2d)
σ σ
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= exp
(

2μ
σ

(d− u + l)
)
N

(
l − 2u + 2d + μ

σT√
T

)

+ exp
(

2μ
σ

(u− d)
)
N

(
l − 2u + 2d− μ

σT√
T

)
. �

Lemma A.3. For x ≥ l, the probability that the process Xt falls below d, and then rises above u, and then 
does not fall below l before time T , and its value at time T is less than x, is

P (τdu < T, τdul > T, XT ≤ x | X0 = 0)

= exp
(

2μ
σ

(u− d)
)[

N

(
x− 2u + 2d− μ

σT√
T

)
−N

(
l − 2u + 2d− μ

σT√
T

)]

+ exp
(

2μ
σ

(d− u + l)
)[

N

(2l − 2u + 2d− x + μ
σT√

T

)
−N

(
l − 2u + 2d + μ

σT√
T

)]
.

Proof.

P (τdu < T, τdul > T, XT ≤ x | X0 = 0)

= P (τdu < T, XT ≤ x | X0 = 0) − P (τdul ≤ T, XT ≤ x | X0 = 0)

= P (τdu < T, XT ≤ x | X0 = 0) − P (τdul ≤ T | X0 = 0)

+ P (τdul ≤ T, XT > x | X0 = 0).

Using Lemma A.1 and Lemma A.2, the proof is completed. �
Theorem A.4. The values of a digital option and a digital share at time t for the event A6 = {t < τD,

τDUk < T} are

D(S, t;A6) = e−r(T−t)
[(

Dk

USt

) 2μ
σ2

N

(
h1

(
D2k

U2St

))
+
(
U

D

) 2μ
σ2

N

(
−h1

(
U2St

D2k

))]
,

DS(S, t;A6) = Ste
−q(T−t)

[(
Dk

USt

) 2μ
σ2

N

(
h2

(
D2k

U2St

))
+

(
U

D

) 2μ
σ2

N

(
−h2

(
U2St

D2k

))]
.

Proof. Apply Lemma A.2 with u = 1
σ ln U

St
, d = 1

σ ln D
St

, l = 1
σ ln k

St
, and x = 1

σ ln X
St

to derive the 
risk-neutral probability of early exercise. Then

P (t < τD, τDUk < T | St) =
(

Dk

USt

) 2μ
σ2

N

(
h1

(
D2k

U2St

))
+

(
U

D

) 2μ
σ2

N

(
−h1

(
U2St

D2k

))
.

Thus, the value of digital option at time t

D(S, t;A6) = e−r(T−t)P (t < τD, τDUk ≤ T )

is obtained. Also, the digital share DS(S, t; A6) can be valued as in Theorem 2.1. �
Under a constant exercise policy, the up-and-in chained put option will be exercised early prior to maturity 

T for X − k if the stock price falls below D, and then rises above U , and then falls to k before time T . 
Now we consider the value of the first-touch digital at time τDUk. We examine the case when there is no 
dividend on the stock first.
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Lemma A.5. If the stock does not pay dividends, the value of a first-touch digital for the event A6 = {t <
τD, τDUk < T} is

E(S, t, k;A6)

= X − k

k
St

[(
Dk

USt

) 2r
σ2 +1

N

(
h3

(
D2k

U2St

))
+

(
U

D

) 2r
σ2 +1

N

(
−h3

(
U2St

D2k

))]

where

h3(z) =
ln z + (r + 1

2σ
2)(T − t)

σ
√
T − t

.

Proof. The first-touch digital pays X − k at time τDUk. This money can be used to purchase X−k
k shares 

of the stock at that time. Since the shares do not pay dividends, it is worth X−k
k ST at maturity T , i.e.,

E(S, t, k;A6) = X − k

k
DS(S, t;A6)

where DS(S, t; A6) is a value when q = 0 in Theorem A.4. �
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