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1. Introduction

Barrier options are a widely used class of path-dependent derivative securities. These options “knock in” or “knock out”
when the price of the underlying asset crosses a certain barrier level. For example, an up-and-in call option gives the
option holder the payoff of a call if the price of the underlying asset reaches a higher barrier level during the option’s life,
and it pays off zero unless the asset price reaches that level. For an up-and-out call, the option becomes worthless if the
underlying asset price hits a higher barrier, and its payoff at expiration is a call otherwise. Options with a lower barrier
level are said to be down-and-in and down-and-out options.

Merton [6] has derived a down-and-out call price by solving the corresponding partial differential equation with some
boundary conditions. Rubinstein and Reiner [10] published closed form pricing formulas for various types of single barrier
options. Rich [9] also provided a mathematical framework to value barrier options. In these papers, the underlying asset
price is monitored with respect to a single constant barrier for the entire life of the option.

Due to their popularity in a market, more complicated structures of barrier options have been studied by a number of
authors. Kunitomo and Ikeda [5] derived a pricing formula for double barrier options with curved boundaries as the sum of
an infinite series. Geman and Yor [1] followed a probabilistic approach to derive the Laplace transform of the double barrier
option price.

Heynan and Kat [3] studied so-called partial barrier options where the underlying price is monitored for a part of the
option’s lifetime. For theses options, either the barrier disappears at a specified date strictly before the maturity (i.e., early
ending option) or the barrier appears at a fixed date strictly after the start of the option (i.e., forward starting option). In the
paper, the authors gave valuation formulas for partial barrier options in terms of bivariate normal distribution functions. As
a natural variation on the partial barrier structure, window barrier options have become popular wit h investors, particularly
in foreign exchange markets. For a window barrier option, a monitoring period for the barrier commences at the forward
start date and terminates at the early ending date. (We refer to Hui [4] and Guillaume [2].) However, all these papers are
concerned with barrier options where monitoring of the barrier starts at a predetermined date.
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This paper concerns barrier options where monitoring of the barrier starts at random time when the underlying asset
price first crosses a certain barrier level. For these options, one can consider as a secondary barrier option that is given to
a primary barrier option holder in the event of the primary barrier being crossed. Furthermore, this paper studies barrier
options where monitoring for the barrier commences at time when the underlying asset price first crosses two barrier levels
in a specified order. Interestingly, these options can be seen as three standard barrier options that are chained together. Op-
tions with having the similar features to the former (simple) case was discussed in Pfeffer [8], where the price is computed
by Laplace transforms through conditioning on the hitting time. However, the technique adopted in [8] cannot be applied
well to the latter case of this paper, in which two hitting times are involved to activate a barrier option.

In this paper, we derive closed form valuation formulas for various barrier options of this new type by applying the
reflection principle and Girsanov’s Theorem in a proper way. Also, the methodology we develop in this paper is easily ap-
plicable to more complicated structure, where more than two hitting times are chained together to activate barrier options.

This paper is organized as follows. Section 2 presents a valuation formula for a down-and-in call option (DICu) activated
at time when the underlying asset price hits a higher barrier level. The prices of the options with knock-out barrier are
discussed. Section 3 gives a valuation formula of an up-and-in call option (UICud) which is activated at time when the asset
price crosses two barrier levels (an up-barrier followed by a down-barrier). The case of knock-out options is also treated.
Section 4 shows the numerical results of six graphs explaining the properties of the prices DICu and UICud with respect
to option parameters. The pricing formulas for an up-and-in call option reached by crossing a down-barrier (UICd) and a
down-and-in call option reached by crossing a down-barrier followed by an up-barrier (DICdu) are given in Appendices A
and B.

2. Case of crossing a barrier

Let r be the risk-free interest rate and σ > 0 be a constant. We assume the price of the underlying asset S follows a
geometric Brownian motion

St = S0 exp(μt + σ Wt)

where μ = r − σ 2

2 and Wt is a standard Brownian motion under the risk-neutral probability P .
Let Xt = 1

σ ln(St/S0). We define the minimum and maximum for Xt to be

mb
a = inf

t∈[a,b]
(Xt), Mb

a = sup
t∈[a,b]

(Xt)

and denote by Em the expectation operator under the m-measure.
Consider a European call expiring at T with strike price K . We fix an up-barrier U (> S0) and a down-barrier D (< S0).

We define k = 1
σ ln(K/S0), u = 1

σ ln(U/S0) and d = 1
σ ln(D/S0).

Now we provide the valuation formula for a down-and-in call option commencing at time when the asset price hits the
up-barrier U under the assumption of K > D; For the case of K � D , see Theorem 2.2.

Theorem 2.1. Suppose K > D. The knock-in call option value at time 0, DICu , which is activated at time τ = min{t: St = U , U > S0}
is

DICu = S0

(
D

U

) 2μ̃

σ2

N(z1) − e−rT K

(
D

U

) 2μ

σ2

N(z1 − σ
√

T )

where

z1 = 1

σ
√

T
ln

(
D2 S0

U 2 K

)
+ μ̃

σ

√
T ,

μ̃ = r + σ 2

2 , S0 is the underlying asset spot value at time 0 beyond the down-barrier D and N(x) is the cumulative standard normal
distribution function.

Proof. The knock-in call option value at time 0 is given by the discounted expected value of its payoff under the risk-neutral
measure. Thus

DICu = e−rT E P [
(ST − K )+1{mT

τ �d, τ�T Sτ =U }
] = e−rT E P [

(ST − K )1{mT
τ �d,ST >K , τ�T Sτ =U }

]
where 1{} is an indicator function.

Let us define a new measure P̃ such that

dP̃ = e− 1
2 σ 2 T +σ W T .
dP
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Then,

DICu = S0 P̃
(
mT

τ � d, ST > K , τ � T Sτ = U
) − e−rT K P

(
mT

τ � d, ST > K , τ � T Sτ = U
)
.

It suffices to calculate the required probability under the P -measure: a simple change of drift from μ to μ̃ will provide the
required probability under the P̃ -measure. Note that

P
(
mT

τ � d, ST > K , τ � T Sτ = U
) = P

(
mT

τ � d, XT > k, τ � T , Xτ = u
)

where Xt = Wt + (
μ
σ )t is a standard Brownian motion under the equivalent measure Q , defined by

dQ

dP
= exp

[
−μ

σ
W T − 1

2

(
μ

σ

)2

T

]
.

Let us introduce a process X̃t , t ∈ [0, T ], defined by the formula

X̃t =
{

Xt (t � τ )

2u − Xt (t > τ).

By virtue of the reflection principle, the process X̃t also follows a standard Brownian motion under Q . Then

P
(
mT

τ � d, XT > k, τ � T , Xτ = u
)

(1)

= E P [1{mT
τ �d, XT >k, τ�T , Xτ =u}] (2)

= E Q
[

dP

dQ
1{mT

τ �d, XT >k, τ�T , Xτ =u}
]

(3)

= E Q [
e

μ
σ XT − 1

2
μ2

σ2 T 1{mT
τ �d, XT >k, τ�T , Xτ =u}

]
(4)

= E Q [
e

μ
σ (2u− X̃T )− 1

2
μ2

σ2 T 1{M̃T
τ �2u−d, X̃T <2u−k, τ�T }

]
(5)

where M̃T
τ = supt∈[τ ,T ]( X̃t).

Since 2u − d > u, {M̃T
τ � 2u − d, τ � T } = {M̃T

0 � 2u − d}. Thus,

P
(
mT

τ � d, XT > k, τ � T , Xτ = u
) = E Q [

e
μ
σ (2u− X̃T )− 1

2
μ2

σ2 T 1{M̃T
0 �2u−d, X̃T <2u−k}

]
.

We apply the reflection principle again. Let us introduce a process X̂t , t ∈ [0, T ], defined by the formula

X̂t =
{

X̃t (t � τ ′)
2(2u − d) − X̃t (t > τ ′)

where τ ′ = min{t > τ : X̃t = 2u − d}. By virtue of the reflection principle, the process X̂t also follows a standard Brownian
motion under Q and

P
(
mT

τ � d, XT > k, τ � T , Xτ = u
)

= E Q [
e

μ
σ (−2u+2d+ X̂T )− 1

2
μ2

σ2 T 1{ X̂T >2u−2d+k}
]

= e
μ
σ (−2u+2d)E Q [

e
μ
σ X̂T − 1

2
μ2

σ2 T 1{ X̂T >2u−2d+k}
]
.

Let us define an equivalent probability measure Q̃ by setting

dQ̃

dQ
= e

μ
σ X̂T − 1

2
μ2

σ2 T

so that the process W̃t = X̂t − μ
σ t , t ∈ [0, T ], follows a standard Brownian motion under Q̃ .

e
μ
σ (−2u+2d)E Q [

e
μ
σ X̂T − 1

2
μ2

σ2 T 1{ X̂T >2u−2d+k}
]

(6)

= e
μ
σ (−2u+2d) Q̃ ( X̂T > 2u − 2d + k) (7)

= e
μ
σ (−2u+2d) Q̃

(
W̃ T > 2u − 2d + k − μ

T

)
(8)
σ
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= e
μ
σ 2(−u+d)N

(−2u + 2d − k + μ
σ T√

T

)
(9)

=
(

D

U

) 2μ

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 2 K

)
+ μ

σ

√
T

)
. (10)

In the measure P̃ , we follow the same process to obtain

P̃
(
mT

τ � d, XT > k, τ � T , Xτ = u
) =

(
D

U

) 2μ̃

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 2 K

)
+ μ̃

σ

√
T

)
.

Therefore

DICu = S0

(
D

U

) 2μ̃

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 2 K

)
+ μ̃

σ

√
T

)
− e−rT K

(
D

U

) 2μ

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 2 K

)
+ μ

σ

√
T

)
. �

Theorem 2.2. Suppose K � D. The knock-in call option value at time 0, DICu , which is activated at time τ = min{t: St = U , U > S0}
is

DICu = S0

[(
D

U

) 2μ̃

σ2

N(z2) +
(

U

S0

) 2μ̃

σ2

N(z3) −
(

U

S0

) 2μ̃

σ2

N(z4)

]

− e−rT K

[(
D

U

) 2μ

σ2

N(z2 − σ
√

T ) +
(

U

S0

) 2μ

σ2

N(z3 + σ
√

T ) −
(

U

S0

) 2μ

σ2

N(z4 + σ
√

T )

]
where

z2 = 1

σ
√

T
ln

(
D S0

U 2

)
+ μ̃

σ

√
T , z3 = 1

σ
√

T
ln

(
D S0

U 2

)
− μ̃

σ

√
T ,

z4 = 1

σ
√

T
ln

(
K S0

U 2

)
− μ̃

σ

√
T .

Proof. We start from (1) in the proof of Theorem 2.1.

P
(
mT

τ � d, XT > k, τ � T , Xτ = u
) = P

(
mT

τ � d, XT > d, τ � T , Xτ = u
)

+ P
(
mT

τ � d, k < XT � d, τ � T , Xτ = u
)
.

By Eq. (10),

P
(
mT

τ � d, XT > d, τ � T , Xτ = u
) =

(
D

U

) 2μ

σ2

N

(
1

σ
√

T
ln

(
D S0

U 2

)
+ μ

σ

√
T

)
.

From (A.89) in Musiela and Rutkowski [7, p. 653], we obtain

P
(
mT

τ � d, k < XT � d, τ � T , Xτ = u
)

= P (Xτ = u, τ � T , k < XT � d)

= e
2μ
σ u

{
P

(
XT � 2u − d + 2

μ

σ
T

)
− P

(
XT � 2u − k + 2

μ

σ
T

)}

=
(

U

S0

) 2μ

σ2
{

N

(
1

σ
√

T
ln

(
D S0

U 2

)
− μ

σ

√
T

)
− N

(
1

σ
√

T
ln

(
K S0

U 2

)
− μ

σ

√
T

)}
. �

Remark 2.3. To value the knock-out call (down-and-out) option at time 0, DOCu , which is activated at time τ = min{t: St =
U , U > S0}, we apply the knock-in knock-out parity relation. So, we subtract DICu from the up-and-in call price UIC to get

DOCu = UIC − DICu .

The valuation formulas for an up-and-in call (UICd) and an up-and-out call (UOCd) activated in the event that the asset
price first hits the down-barrier D are provided in Appendix A.
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3. Case of crossing two barrier levels

We derived, in the previous section, the pricing formulas for barrier options commencing at time when the asset price
crosses a specified barrier level. In this section, we consider barrier options activated in the event that the asset price
crosses two barrier levels in a specified order, i.e., hits the up-barrier U followed by reaching the down-barrier D , or vice
versa.

The following theorem presents the valuation formula for an up-and-in call option reached by crossing the down-barrier
after crossing the up-barrier under the assumption of K < U . Theorem 3.2 gives the formula for the case of K � U .

Theorem 3.1. Suppose K < U . The knock-in call option value at time 0, UICud, which is activated at time

τ2 = min
{

t > τ1: St = D, τ1 = min{t > 0: St = U , U > S0}
}

is

UICud = S0

[(
D

U

) 2μ̃

σ2

N(z5) +
(

U 2

D S0

) 2μ̃

σ2

N(z6) −
(

U 2

D S0

) 2μ̃

σ2

N(z7)

]

− e−rT K

[(
D

U

) 2μ

σ2

N(z5 − σ
√

T ) +
(

U 2

D S0

) 2μ

σ2

N(z6 + σ
√

T ) −
(

U 2

D S0

) 2μ

σ2

N(z7 + σ
√

T )

]
where

z5 = 1

σ
√

T
ln

(
D2 S0

U 3

)
+ μ̃

σ

√
T , z6 = 1

σ
√

T
ln

(
D2 S0

U 3

)
− μ̃

σ

√
T ,

z7 = 1

σ
√

T
ln

(
D2 K S0

U 4

)
− μ̃

σ

√
T

S0 is the underlying asset spot value at time 0 beyond the down-barrier D, and N(x) is the cumulative standard normal distribution
function.

Proof. Under the risk-neutral measure, the knock-in call option value at time 0 is

UICud = e−rT E P [
(ST − K )+1{MT

τ2
�u, τ1<τ2�T , Sτ1 =U , Sτ2 =D}

]
= e−rT E P [

(ST − K )1{MT
τ2

�u, ST >K , τ1<τ2�T , Sτ1 =U , Sτ2 =D}
]
.

Let us define a new measure P̃ such that

dP̃

dP
= e− 1

2 σ 2 T +σ W T .

Then, we have

UICud = S0 P̃
(
MT

τ2
� u, ST > K , τ1 < τ2 � T , Sτ1 = U , Sτ2 = D

)
− e−rT K P

(
MT

τ2
� u, ST > K , τ1 < τ2 � T , Sτ1 = U , Sτ2 = D

)
.

We calculate the required probability only under the P -measure as in the proof of Theorem 2.1. Note that

P
(
MT

τ2
� u, ST > K , τ1 < τ2 � T , Sτ1 = U , Sτ2 = D

)
= P

(
MT

τ2
� u, XT > k, τ1 < τ2 � T , Xτ1 = u, Xτ2 = d

)
where Xt = Wt + (

μ
σ )t is a standard Brownian motion under the equivalent probability measure Q , defined by

dQ

dP
= exp

[
−μ

σ
W T − 1

2

(
μ

σ

)2

T

]
.

Then,

P
(
MT

τ2
� u, XT > k, τ1 < τ2 � T , Xτ1 = u, Xτ2 = d

)
= E Q

[
dP

dQ
1{MT

τ2
�u, XT >k, τ1<τ2�T , Xτ1 =u, Xτ2 =d}

]

= E Q [
e

μ
σ XT − 1

2
μ2

σ2 T 1{MT �u, X >k, τ <τ �T , X =u, X =d}
]
.

τ2 T 1 2 τ1 τ2
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Let us introduce a process X̃t , t ∈ [0, T ], defined by the formula

X̃t =
{

Xt (t � τ1)

2u − Xt (t > τ1).

By virtue of the reflection principle, the process X̃t also follows a standard Brownian motion under Q , and

E Q [
e

μ
σ XT − 1

2
μ2

σ2 T 1{MT
τ2

�u, XT >k, τ1<τ2�T , Xτ1 =u, Xτ2 =d}
]

= E Q [
e

μ
σ (2u− X̃T )− 1

2
μ2

σ2 T 1{m̃T
τ2

�u, X̃T <2u−k, τ2�T , X̃τ2 =2u−d}
]

where m̃T
τ2

= inft∈[τ2,T ]( X̃t).
Here, we apply the reflection principle again. Let us introduce a process X̂t , t ∈ [0, T ], defined by the formula

X̂t =
{

X̃t (t � τ2)

2(2u − d) − X̃t (t > τ2).

Then, the process X̂t also follows a standard Brownian motion under Q , and

E Q [
e

μ
σ (2u− X̃T )− 1

2
μ2

σ2 T 1{m̃T
τ2

�u, X̃T <2u−k, τ2�T , X̃τ2 =2u−d}
]

= E Q [
e

μ
σ (−2u+2d+ X̂T )− 1

2
μ2

σ2 T 1{M̂T
τ2

�3u−2d, X̂T >2u−2d+k, τ2�T }
]

where M̂T
τ2

= supt∈[τ2,T ]( X̂t).
Since 3u − 2d > 2u − d > u, {M̂T

τ2
� 3u − 2d, τ2 � T } = {M̂T

0 � 3u − 2d}. Thus,

E Q [
e

μ
σ (−2u+2d+ X̂T )− 1

2
μ2

σ2 T 1{M̂T
τ2

�3u−2d, X̂T >2u−2d+k, τ2�T }
]

= e
μ
σ (−2u+2d)E Q [

e
μ
σ X̂T − 1

2
μ2

σ2 T 1{M̂T
0 �3u−2d, X̂T >2u−2d+k}

]
.

Let us define an equivalent probability measure Q̃ by setting

dQ̃

dQ
= e

μ
σ X̂T − 1

2
μ2

σ2 T

so that the process W̃t = X̂t − μ
σ t, t ∈ [0, T ], follows a standard Brownian motion under Q̃ .

e
μ
σ (−2u+2d)E Q [

e
μ
σ X̂T − 1

2
μ2

σ2 T 1{M̂T
0 �3u−2d, X̂T >2u−2d+k}

]
= e

μ
σ (−2u+2d) Q̃

(
M̂T

0 � 3u − 2d, X̂T > 2u − 2d + k
)

= e
μ
σ (−2u+2d)

[
Q̃

(
M̂T

0 � 3u − 2d
) − Q̃

(
M̂T

0 � 3u − 2d, X̂T � 2u − 2d + k
)]

.

From (A.92) and (A.90) in Musiela and Rutkowski [7, p. 655], we obtain

Q̃
(
M̂T

0 � 3u − 2d
) = Q̃ ( X̂T � 3u − 2d) + e

2μ
σ (3u−2d) Q̃

(
X̂T � 3u − 2d + 2μ

σ
T

)

= Q̃

(
W̃ T � 3u − 2d − μ

σ
T

)
+ e

2μ
σ (3u−2d) Q̃

(
W̃ T � 3u − 2d + μ

σ
T

)

= N

(−3u + 2d√
T

+ μ

σ

√
T

)
+ e

2μ
σ (3u−2d)N

(−3u + 2d√
T

− μ

σ

√
T

)

= N

(
1

σ
√

T
ln

(
D2 S0

U 3

)
+ μ

σ

√
T

)
+ e

2μ
σ (3u−2d)N

(
1

σ
√

T
ln

(
D2 S0

U 3

)
− μ

σ

√
T

)
and

Q̃
(
M̂T

0 � 3u − 2d, X̂T � 2u − 2d + k
) = e

2μ
σ (3u−2d)N

(−4u + 2d + k√
T

− μ

σ

√
T

)

= e
2μ
σ (3u−2d)N

(
1√ ln

(
D2 K S0

4

)
− μ√

T

)
.

σ T U σ
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Therefore,

P
(
MT

τ2
� u, XT > k, τ1 < τ2 � T , Xτ1 = u, Xτ2 = d

)
=

(
D

U

) 2μ

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 3

)
+ μ

σ

√
T

)
+

(
U 2

D S0

) 2μ

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 3

)
− μ

σ

√
T

)

−
(

U 2

D S0

) 2μ

σ2

N

(
1

σ
√

T
ln

(
D2 K S0

U 4

)
− μ

σ

√
T

)
.

In the measure P̃ , we get the similar results.

P̃
(
MT

τ2
� u, XT > k, τ1 < τ2 � T , Xτ1 = u, Xτ2 = d

)
=

(
D

U

) 2μ̃

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 3

)
+ μ̃

σ

√
T

)
+

(
U 2

D S0

) 2μ̃

σ2

N

(
1

σ
√

T
ln

(
D2 S0

U 3

)
− μ̃

σ

√
T

)

−
(

U 2

D S0

) 2μ̃

σ2

N

(
1

σ
√

T
ln

(
D2 K S0

U 4

)
− μ̃

σ

√
T

)
.

By combining the results together, we complete the proof. �
If the strike price K is greater than or equal to the up-barrier U , the payoff of the call is zero unless the asset price

at expiry is greater than the up-barrier U . Since the asset price must reach the up-barrier after crossing the down-barrier
before expiry for nonzero payoff, UICud is equal to DICu in this case.

Theorem 3.2. Suppose K � U . The knock-in call option value at time 0, UICud, which is activated at time

τ2 = min
{

t > τ1: St = D, τ1 = min{t > 0: St = U , U > S0}
}

is

UICud = S0

(
D

U

) 2μ̃

σ2

N(z1) − e−rT K

(
D

U

) 2μ

σ2

N(z1 − σ
√

T ).

Remark 3.3. The knock-out call option value at time 0, UOCud , which is activated at time τ2 = min{t > τ1: St = D, τ1 =
min{t > 0: St = U , U > S0}} is calculated as follows:

UOCud = DICu − UICud.

The valuation formulas for a down-and-in call (DICdu) and a down-and-out call (DOCdu) activated in the event of crossing
the down-barrier followed by crossing the up-barrier are provided in Appendix B.

4. Numerical results

In this section, we illustrate the properties of our solutions obtained in Sections 2 and 3. Fig. 1 shows how the price
DICu changes when the volatility and strike price vary. The volatility increases from 0.1 to 0.5 and the strike price decreases
from 120 to 80 under the assumption that S0 = 100, U = 110, D = 90, r = 0.05 and T = 0.5. We see that the option price
DICu increases as the volatility increases or the strike price decreases. Since the probability of the asset price hitting given
barriers gets bigger as the volatility increases, the knock-in option value naturally increases.

Fig. 2 concerns the price UICud , and shows the same properties as DICu in Fig. 1. Fig. 3 shows the comparison of DICu

and UICud with the same parameters as in Figs. 1 and 2. We observe UICud is always lower than DICu as expected.
Fig. 4 illustrates the changes of UICud when the up-barrier and down-barrier vary. With the parameters S0 = 100, K =

100, r = 0.05, σ = 0.3, T = 0.5, U changes between 100 and 120, and D moves between 80 and 100. We observe from
Fig. 4, UICud approximates to zero as both U and D drifts farther from the underlying asset price at time 0. If U and D are
set to be S0 = 100, then UICud is equal to the vanilla call option price, which corresponds to the highest point in Fig. 4.
Fig. 5 shows the prices DICu and UICud for different underlying asset prices S0.

Finally, Fig. 6 represents that simulation results, up to 10,000 paths of the underlying asset price process, converge to
the exact value obtained in Section 3. We simulate the monitoring frequency from 1000 to 10,000 under the assumption
that S0 = 100, K = 100, U = 110, D = 90, r = 0.05, σ = 0.3, T = 0.5. Then the exact value from Theorem 3.1 is 0.2146 and
the simulation value of UICud is 0.2142 with monitoring frequency of 10,000. In general, a standard Monte Carlo Method
systematically underprice the knock-in call option (see Geman and Yor [1]). The reason is that the underlying asset price
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Fig. 1. DICu result, varying K and σ (option parameters: S0 = 100, U = 110, D = 90, r = 0.05, and T = 0.5).

Fig. 2. UICud result, varying K and σ (option parameters: S0 = 100, U = 110, D = 90, r = 0.05, and T = 0.5).

Fig. 3. Comparison between UICud and DICu , varying K and σ (option parameters: S0 = 100, U = 110, D = 90, r = 0.05, and T = 0.5).
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Fig. 4. UICud results when U varies between 100 and 120, and D varies between 80 and 100 (option parameters: S0 = 100, K = 100, r = 0.05, σ = 0.3, and
T = 0.5).

Fig. 5. Comparison between UICud and DICu , varying S0 (option parameters: U = 110, D = 90, K = 100, r = 0.05, σ = 0.3, and T = 0.5).

Fig. 6. Monte Carlo simulation results of UICud using Antithetic Variates method when monitoring frequency is increased from 1000 to 10,000 (S0 = 100,
K = 100, U = 110, D = 90, r = 0.05, σ = 0.3, T = 0.5, sample paths 10,000, exact value = 0.2146 and the value of UICud is 0.2142 when monitoring
frequency is 10,000).
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is checked at discrete instants through simulations. In fact, the barrier might have been crossed without being detected. To
overcome such difficulties, we applied the Antithetic Variates, a Variance Reduction Method of Monte Carlo Method, and
simulated the monitoring frequency until 10,000.

5. Conclusion

In this paper, we derived closed-form valuation formulas for barrier options of a new type where the underlying asset
price should cross a specified barrier level to activate a regular barrier option. These options are popular in the over-the-
counter equity and foreign exchange derivative markets. We further derived explicit valuation formulas for barrier options
activated at time the underlying asset price first crosses two barrier levels in a specified order. Due to this contribution, one
can price various knock-in and knock-out options of this type. We applied the reflection principle repeatedly on the barrier
crossing times in a proper way. A great advantage of our methodology is that it can be easily applied to the case of more
complicated structure where further crossing events are chained to activate a barrier option. We also presented the graphs
illustrating the properties of the prices, and showed simulation results to confirm the accuracy of our solution.
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Appendix A

A.1. Suppose K < U . The knock-in call option value at time 0, UICd , which is activated at time τ = min{t: St = D, D <

S0} is

UICd = S0

[(
D

S0

) 2μ̃

σ2

N(z8) +
(

U

D

) 2μ̃

σ2

N(z9) −
(

U

D

) 2μ̃

σ2

N(z10)

]

− e−rT K

[(
D

S0

) 2μ

σ2

N(z8 − σ
√

T ) +
(

U

D

) 2μ

σ2

N(z9 + σ
√

T ) −
(

U

D

) 2μ

σ2

N(z10 + σ
√

T )

]
where

z8 = 1

σ
√

T
ln

(
D2

U S0

)
+ μ̃

σ

√
T , z9 = 1

σ
√

T
ln

(
D2

U S0

)
− μ̃

σ

√
T ,

z10 = 1

σ
√

T
ln

(
D2 K

U 2 S0

)
− μ̃

σ

√
T .

A.2. Suppose K � U . The knock-in call option value at time 0, UICd , which is activated at time τ = min{t: St = D, D <

S0} is

UICd = S0

(
D

S0

) 2μ̃

σ2

N(z11) − e−rT K

(
D

S0

) 2μ

σ2

N(z11 − σ
√

T )

where

z11 = 1

σ
√

T
ln

(
D2

K S0

)
+ μ̃

σ

√
T .

A.3. The knock-out call option value at time 0, UOCd , which is activated at time τ = min{t: St = D, D < S0} is given by

UOCd = DIC − UICd.

Appendix B

B.1. Suppose K > D . The knock-in call option value at time 0, DICdu , which is activated at time τ2 = min{t > τ1: St =
U , τ1 = min{t > 0: St = D, D < S0}} is

DICdu = S0

(
D2

U S0

) 2μ̃

σ2

N(z12) − e−rT K

(
D2

U S0

) 2μ

σ2

N(z12 − σ
√

T )

where

z12 = 1

σ
√

T
ln

(
D4

U 2 K S0

)
+ μ̃

σ

√
T .
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B.2. Suppose K � D . The knock-in call option value at time 0, DICdu , which is activated at time τ2 = min{t > τ1: St =
U , τ1 = min{t > 0: St = D, D < S0}} is

DICdu = S0

[(
D2

U S0

) 2μ̃

σ2

N(z13) +
(

U

D

) 2μ̃

σ2

N(z14) −
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]

− e−rT K
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√
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U
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T )

]
where

z13 = 1

σ
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T
ln

(
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U 2 S0

)
+ μ̃

σ

√
T , z14 = 1

σ
√

T
ln

(
D3
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)
− μ̃

σ

√
T .

B.3. The knock-out call option value at time 0, DOCdu , which is activated at time τ2 = min{t > τ1: St = U , τ1 = min{t >

0: St = D, D < S0}} is obtained as follows:

DOCdu = UICd − DICdu .

References

[1] H. Geman, M. Yor, Pricing and hedging double-barrier options: A probabilistic approach, Math. Finance 6 (1996) 365–378.
[2] T. Guillaume, Window double barrier options, Rev. Deriv. Res. 6 (2003) 47–75.
[3] R.C. Heynen, H.M. Kat, Partial barrier options, J. Financ. Engrg. 3 (1994) 253–274.
[4] C.H. Hui, Time-dependent barrier optionvalues, J. Futures Markets 17 (6) (1997) 667–688.
[5] N. Kunitomo, M. Ikeda, Pricing options with curved boundaries, Math. Finance 2 (1992) 275–298.
[6] R.C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci. 4 (1973) 141–183.
[7] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, second ed., Springer, 2005.
[8] D. Pfeffer, Sequential barrier options, Algo Res. Quarterly 4 (3) (2001) 65–73.
[9] D. Rich, The mathematical foundations of barrier option pricing theory, Adv. Futures Options Res. 7 (1997).

[10] E. Reiner, M. Rubinstein, Breaking down the barriers, Risk 4 (8) (1991) 28–35.


	Cross a barrier to reach barrier options
	1 Introduction
	2 Case of crossing a barrier
	3 Case of crossing two barrier levels
	4 Numerical results
	5 Conclusion
	Acknowledgments
	References


