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A valuation problem of the European style contingent claim in the market with daily price movement limit is
studied. Unlike the one leading to the well known Black–Scholes formula, this problem depicts considerable
conceptual dif�culty and anomaly created by the presence of various arbitrage opportunities inherently built in
the model due to the daily price movement limit. The presence of arbitrage makes it go against the grain of the
well established arbitrage pricing theory. In this paper, how these complications arise are discussed and then a
valuation approach devised, which is called the ‘vanishing transaction cost technique,’ of getting around the
dif�culty.
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1. Introduction

The basic premise of Black and Scholes (1973) option pricing is that the process S t representing
the stock price obeys the simple diffusion process de�ned by the following stochastic differential
equation

dS t=S t ˆ l dt ‡ r dBt,

where Bt is the standard Brownian motion, and l and r are constants.
Several models to relax the above assumptions are proposed and studied by many authors. Some

authors consider, for example, the processes with stochastic volatility or jump, and some study the
effects of the transaction costs, or the incompleteness of the market, or the trading restriction.
However, all of them subscribe to the assumptions that the process is Markov and the arbitrage
cannot occur. They seem like very natural assumptions in view of the economic principle and the
Ef�cient Market Hypothesis.

However, in some markets, such assumptions cannot be made without examining carefully the
restrictions governing the behaviour of the market. One such example is the market with the daily
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price movement limit, which means that the price of an individual stock in each trading day cannot
move above or below a certain �xed percentage point of the closing price of the previous trading
day. That means that the stock price process in each trading day has the movement range, and the
movement range of the next day is determined as a �xed percentage point above or below the
closing price of the present trading day. Since the closing price is stochastic, so is the trading range
of the next day. There are many markets which adopt the daily price movement limit rule: The
Korean stock market has the daily price movement limit of 8%, and the Japanese stock market has
similar rule, but with wider range, and so does the commodity futures market.

In Section 2, we propose a stochastic process model which is a direct analogue in this setting of
the well known log-normal diffusion process. It is done in two steps. First, the price process of a
given day can be modelled using the geometric Brownian motion with boundary. Once the price hits
the upper or lower limit, it may stay at that level all day, or, as the market condition dictates, it may
move inside the trading range later in the same trading day. So its boundary behaviour resembles the
geometric Brownian motion whose boundary is slowly re�ecting. For lack of terminology, we call
such process a geometric Brownian motion with boundary. It satis�es a stochastic differential
equation with boundary condition, and is studied in Section 2.1. The second step is to extend the
process to the multiday period. The simplest and the most natural assumption to make is that the
next day is just like any other day except that it has a different trading range. It is studied in Section
2.2, and it is proved that this kind of periodicity condition essentially implies that such process
cannot be Markov.

Next, we study the valuation problem of the European style contingent claim in this kind of
market. Before we go on, let us make one more assumption: namely, the trader can trade at the
prevailing price at any time of the trading day.

Examine now carefully various mathematical possibilities of arbitrage opportunities associated
with this kind of process assuming there are no transaction costs. Suppose the price is at the upper
limit in the middle of trading day. Then the trader can employ the trading strategy of selling short
the stock at that price and covering back at the end of the trading day. As the price is guaranteed
not to go over the upper limit, the trader will not lose as long as he or she covers it back before the
end of the day, and the trader gains in two ways: �rst, if he or she may be able to cover it back at a
lower price, the difference is his or her pro�t; and as the interest is compounded continuously, the
trader will get a sure pro�t, albeit minuscule, due to the interest, even if he or she has to cover it
back at the same price. If the price is at the lower limit in the middle of the trading day, the same
argument applies. This anomaly can be interpreted as a weak form of arbitrage because the trader
will not lose under any circumstances and the expected pro�t is positive. Of course, one may argue
that it is not signi�cant enough to be taken into consideration in the actual practice. However, this
mathematical possibility of arbitrage opportunities will lead into inconsistency of the model, which
make it impossible to apply the arbitrage pricing theory that is �rmly established in the theory of
�nance. We also assume that the interest is paid at the beginning of each trading day. But, we use
continously compounded interest rate as a proxy in the calculation.

In Section 3, we study a simplistic model with no transaction costs in which no arbitrage is
possible. In order to avoid the arbitrage, we assume that the boundary of the geometric Brownian
motion with boundary is absorbing and the interest rate is zero. Even in this simplistic case, our
result is interesting, since our process is still non-Markov. It also serves as an illustration of our
philosophy for the remainder of this paper.
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If one wants to consider the case which is more general than that in Section 3, one immediately
faces lots of dif�culties. Above of all, the aforementioned arbitrages make it very dif�cult to apply
any established arbitrage pricing theory framework. To get around this dif�culty, we present a new
conceptual devise. It is based on the following observation: The aforementioned theoretical arbitrage
cannot be pro�tably employed in practice largely because of the transaction costs, so the problem
may be gotten around by incorporating the ‘residual effect’ of the transaction costs in the model,
even if no actual transaction costs are incurred. One way of incorporating the ‘residual effect’ of the
transaction costs is to use a certain discretization scheme à la Leland (1985), and let the transaction
costs vanish suf�ciently fast as the size of the discretization interval gets to zero. Thus in the end
the transaction costs disappear, and we obtain a certain partial differential equation satisfying certain
initial boundary value conditions, which can be used to value the option in this context. This method
is reminiscent of the vanishing viscosity technique of solving the Euler equation in �uid mechanics,
and in this sense, we call our method a ‘vanishing transaction cost technique.’

We would like to thank the referee for suggestions in several places for certain conceptual
clari�cation.

2. The price process

In this section, we describe a new kind of stochastic process which models the price process
having the daily price movement limit. When the range of movement is small, it behaves
signi�cantly differently from the geometric Brownian motion. We �rst introduce an intra-day
model, which we call the geometric Brownian motion with boundary. We then extend this to a
multiday model, which we call the geometric Brownian motion with stochastically moving
boundary.

2.1. Geometric Brownian motion with boundary (intraday model)

The stochastic process that models the price process in a single day must meet several
characteristic requirements. First, it must behave like the geometric Brownian motion with drift
when the process is inside the movement range, but its boundary behaviour should be general
enough to encompass the slowly re�ecting case as well absorbing or instantaneously re�ecting
one. The simplest and the most natural one is given by the following stochastic differential
equation:

dX (t) ˆ r (X (t))I (a,b)(X (t))dBt ‡ l (X (t))I (a,b)(X (t))dt ‡ d 1du t - d 2dw t

Ifagdt ˆ r1du t

Ifbgdt ˆ r2dw t

8
<

: (1)

where u and w are so-called local times at a and b, respectively. The probability space is taken
to be (W , B (W )), where W is the space consisting of all continuous functions de�ned on [0, 1]
and B (W ) is the usual Borel r -�eld of W . For the intuitive understanding, one may envision
that r represents how sticky the boundary is. In fact, r . 0 indicates that the boundary is not
instantaneously re�ecting and d . 0 indicates that the boundary is not absorbing. This stochastic
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differential equation is well known. For example, one may �nd the existence and uniqueness
proof in the multidimensional case in Ikeda and Watanabe (1989).

Theorem 1

Assume that r and l in Equation 1 are continuous on [a, b] and also assume that

r (x) > c

d 1, d 2 > c

for some positive constant c. Then for any probability p on ([a, b], B ([a, b])), there exists a
solution X (t) such that the probability law of X (0) coincides with p . Furthermore, the
uniqueness of solutions holds.

Remark

The assumption d 1, d 2 > c can be weakened to the condition that d 1 ‡ r1 . 0 and d 2 ‡ r2 . 0.

2.2. Geometric Brownian motion with stochastically moving boundary (multiday
model)

In this subsection we extend the above intraday process to a multiday one. The simplest and the
most reasonable assumption to make is that any given day is like any other day except that the
range of movement of each day is determined by the closing value of the previous day. This
kind of periodicity and path dependency inevitably implies that this new process cannot be
Markov, and this causes some complication in the economic behaviour of the model. Let X (t) be
the process starting at X (0) ˆ x0 and [(n - 1)T , nT ] be the time interval for the nth day.

To be clear, we itemize our assumptions as follows.

· For the nth day, the price process is assumed to be the geometric Brownian motion with
boundary as described in Section 2.1 with the movement range [a, b] ˆ [(1 - a )X (n - 1)T ,
(1 ‡ b )X (n - 1)T ], where a and b are �xed positive constants.

· The closing value of the nth trading day is the same as the starting value of the n ‡ 1st trading
day.

· The process repeats itself in the next day, in other words, the process for any trading day is the
same as the process for any other trading day except that the movement range is changed.

Theorem 2

Any process de� ned to satisfy the above requirements cannot be a continuous time Markov process with
the transition probabilities satisfying

(1) p t,g (Bjx) ˆ
„

pt,s(Bjy)ps,g (dyjx),

for any x 2 [a, b] and T > t . s . g > 0
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(2) p t,g (:jx)!D d fxg(:)

as t ! g for any x 2 [a, b]

(3) pnT‡ t,nT (B ‡ xjx) ˆ p t,0(B ‡ x0jx0)

for n 2 N and fixed T

where B is any Borel set of R .

Proof

We may assume for simplicity that a ˆ b ˆ r, x0 ˆ 1. If X (t) is such a Markov process, then its
transition probabilities satisfy the following special case of Chapman–Kolmogorov equations

pT‡g ,T (Bjx) ˆ
…

pT‡ g ,T‡s(Bjz)pT‡s,T (dzjx)

for every B 2 B ( R ), x 2 [1 - r, 1 ‡ r], T > g . s > 0. Let B ˆ [(1 ‡ r)2 - e , (1 ‡ r)2] and x ˆ
1 ‡ r - e =(1 ‡ r) for any suf�ciently small e . Then pT‡g ,T (Bjx) ˆ 0 implies pT‡ g ,T‡s(Bjz) ˆ 0
for almost every (1 - r)x , z , (1 ‡ r)x. Combining Equations 1 and 2, we have pT‡g ,T (Bjz) ˆ 0.
But, by Equation 3, this is a contradiction.

Although the process is non-Markov as a continuous time process, the discrete time process
constructed by restricting the continuous time one at the end of each day becomes a Markov chain.

Theorem 3

Z n ˆ X nT , n ˆ 0, 1, 2 . . . , is a Markov chain, i.e., a discrete time Markov process.

Proof

Let the one-step transition probabilities in the intraday model be p(Bjx) ˆ P(X (T ) 2 BjX (0) ˆ x) for
all B 2 B ( R ) and initial distribution p . Since our process X has the periodicity property,

P(Z n 2 Bn, Zn - 1 2 Bn - 1, . . ., Z0 2 B0)

ˆ
…

Bn - 1

…

Bn - 2

…

B0

p(Bnjxn - 1)p(dxn - 1jxn - 2) p(dx1jx0)p (dx0)

for all Bn, . . ., B0 2 B ( R ). It can be shown that a process satisfying this property is a Markov
chain with p(Bjx) as its transition probabilities.

3. A simple model

As discussed in the Introduction, the market with the daily price limit has intrinsic arbitrage
opportunities, which cause logical problems in applying the well-established arbitrage pricing
theory that must require no arbitrage assumption. However, one can certainly eliminate the
arbitrage opportunities if appropriate restrictions on the model are made. One simple case is to
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assume that the stochastic process is a geometric Brownian motion with stochastically moving
boundary, where the boundary is absorbing, the interest rate is zero and there are no transaction
costs. In this section, we present a valuation method under these assumptions. Although this case
may be too simplistic, the result in this section nonetheless serves as a guide to our philosophy.
Moreover, it is still an interesting result in its own right because the price process for the
multiday periods is non-Markovian. It is to be noted that the pair of the daily price limit and the
price itself constitutes a two-dimensional Markovian process. However, since the daily price limit
is not a tradable quantity, using this two-dimensional Markov process does not seem to make the
problem any easier.

3.1. Intra-day valuation

Assume that the stock price S t is a solution of Equation 1 with r (S t ) ˆ r S t and l (S t ) ˆ l S t

for some constants r and l . Since the boundary is assumed to be absorbing, we may assume
that d 1 ˆ d 2 ˆ 0. Thus S t is a solution of the following SDE:

dS t=S t ˆ l I (a,b)(S t )dt ‡ r I (a,b)(S t )dBt (2)

In order to derive a valuation formula, we suppose that we have a contingent claim whose value
C(S, t) depends only on S and t, and we construct a replicating portfolio consisting of one
contingent claim and - D shares of the stock. Then the value of this portfolio is

P ˆ C - DS

We also assume there is a self-�nancing strategy, which means that the increment in the value of
this portfolio in one time-step is

dP ˆ dC - DdS

Since C depends only on S and t, we can apply Ito’s lemma to C so that

dC ˆ r SI (a,b)(S )
@C
@S

dB

‡ l SI (a,b)(S )
@C
@S

‡ 1
2

r 2S2I (a,b)(S )
@2C
@S2

‡ @C
@ t

dt (3)

Putting Equations 2 and 3 together, we �nd that

dP ˆ r SI (a,b)(S )
@C

@S
- D dS

‡ l SI (a,b)(S )
@C

@S
‡ 1

2
r 2S2I(a,b)(S )

@2C

@S2
‡ @C

@ t
- l SDI (a,b)(S ) dt

We can eliminate the random component in dP by choosing D ˆ (@C=@S ). Note that D is the
value of (@C=@S ) at the start of the time-step dt. This results in a portfolio whose increment is
wholly deterministic, i.e.,
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dP ˆ @C
@ t

‡ 1
2

r 2S2I (a,b)(S)
@2C
@S2 dt

Since we assume r ˆ 0, dP ˆ 0. Therefore,

@C

@ t
‡ 1

2
r 2S2I (a,b)(S )

@2C

@S2
ˆ 0 (4)

Hence we have the following

Theorem 4

In the intraday case, the value C(S, t) of the contingent claim Y (S ) which expires at the end of the day
satis� es the following initial boundary value problem for all (S, t) 2 [a, b] 3 [0, T ]:

@C

@ t
(S, t) ‡ 1

2
r 2S2 @2C

@S2
(S, t) ˆ 0

C(S, T ) ˆ Y (S )

C(a, t) ˆ Y (a)

C(b, t) ˆ Y (b)

Remark

Note that the boundary condition in the above theorem conforms to our intuition. Namely, if the stock
price S t hits the upper limit b, i.e., S t ˆ b at some time, then S t will be b afterwards. Since S t does not
change from that point on, the zero interest rate condition means that the value C(S, t) at that point must
be the same as Y (b), which is exactly the boundary condition in Theorem 4.

3.2. Multiday valuation

In Section 2, we have proposed a model stochastic process which is Markov in the intraday
period. But its multiday extension cannot be Markov, as shown in Section 2. This means that we
cannot hope to have a single formula telling us what C(S, t) is. Rather, we must know the
starting price S(n - 1)T of the nth trading day in order to properly value C(S, t) for
t 2 [(n - 1)T , nT ], since the movement range of the stock price S t in the nth trading day is
determined by the starting price of the same day.

This dependence on the starting price forces us to break the problem into two steps. Before we
proceed, let us recall the semigroup property of the solution of the Black and Scholes partial
differential equation: Namely, let C(S, t) be the value of the contingent claim Y (S ) at time
t 2 [0, T ] with the stock price S where T is the expiry time. Then C(S, 0) can be computed as the
value at time 0 of the contingent claim C(S, s ) with the expiry s . This semigroup property can be
used in two steps for our valuation procedure. First, note that the discrete process obtained by
restricting the time to the end of each trading day is Markov, and we can compute the value
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C(S, nT ) of the contingent claim at the end of nth trading day. Second, once C(S, T ) is computed,
C(S, t) for 0 < t < T can be computed by solving the initial boundary value problem in Theorem 4.

For the simplicity of notation, we will use the logarithm of the stock price. So for the rest of this
section, x, y, or z will be a variable denoting log S. Then the movement range of the stock price x is
[x - a, x ‡ a]. We also assume that there are N trading days left, including today, until the expiry.
We scale the time so that the nth trading day corresponds to the time interval [(n - 1)T , nT ]. We
may also assume without loss of generality that we are only interested in valuing the contingent
claim for time t 2 [0, T ].

Let the contingent claim Y (y) at the expiry t ˆ NT be given. Our valuation process is divided
into two steps: The �rst step computes the value C(y, nT ) of the contingent claim at the end of
each trading day, and the second step computes C(y, t) for t 2 [0, T ]. The process is summarized
below.

3.2.2. The recursive procedure for multiday valuation

Step I. Computation of C(y, nT ).
Suppose C(z, nT ) is given for all z 2 [x - na, x ‡ na].
Then compute C(y, (n - 1)T ) for y 2 [x - (n - 1)a, x ‡ (n - 1)a] as follows:

(i) For each y 2 [x - (n - 1)a, x ‡ (n - 1)a], consider the movement range [y - a, y ‡ a] of
the single day(nth day), and restrict C(z, nT ) to z 2 [y - a, y ‡ a]. (For the possible
movement range, see Fig. 1.)

(ii) Using Theorem 4, we can �nd C(y, (n - 1)T ).

x

x 1  a

x 2  a

x 2  2a

x 1  2a

x 1  3a

x 2  3a

x 2  Na

x 1  Na

0 T 2T 3T NT

Fig. 1. Possible movement range of log S.
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(iii) Using (i) and (ii) above, we can �nd C(y, (n - 1)T ) for all y 2 [x - (n - 1)a, x ‡ (n - 1)a].

This way, we can compute C(y, NT ), C(y, (N - 1)T ), , C(y, T ).

Step II. Computation of C(y, t).
By Step I, C(z, T ) is found for all z 2 [x - na, x ‡ na].
Then we can apply Theorem 4 again to compute C(y, t).

Remark

The actual computation must be carried out numerically.

4. Vanishing transaction cost technique

In this section we study the options valuation problem for the situation more general than that
considered in Section 3. We assume now that the price process is represented as a solution of
Equation 1 for positive d 1, d 2, r1 and r2. Thus the boundary is slowly re�ecting. We also
assume that there are no transaction costs, but the interest rate, compounded continuously, is
allowed to be nonzero. One should notice that in this case, as explained in the Introduction, there
are two inherent arbitrage opportunities. That is, when the price reaches the upper limit, by
selling short at the upper limit and putting the proceeds in the bank, and then covering it back

x 1  (n 2  1)a

x 2  (n 2  1)a

(n 2  1)T
x 2  na

x 1  na

y 1  a

y 2  a

y

nT

Fig. 2. Valuation of contingent claim at y in [x - (n - 1)a, x ‡ (n - 1)a] at t ˆ (n - 1)T .
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at a lower price at the end of the trading day, the trader may get pro�ts from the decline of the
stock price, and he or she also get the sure interest gain.

The presence of arbitrage causes severe problem in the options valuation. In fact, there is not
much one can do when one adheres to the framework of the standard arbitrage pricing theory
because all the known methods must presuppose the no arbitrage condition. However, when we
ponder on the practicality of the aforementioned arbitrage opportunities, it is natural to realize that
they cannot be pro�tably employed in practice largely because of the transaction costs, which
suggests that the transaction costs must play some role. In this section, we devise a technique of
incorporating this idea: Namely, we discretize the time interval and use the model with the
transaction costs in the style of Leland (1985), and then we let the transaction costs vanish
suf�ciently fast as the interval of discretization gets to zero. This way, the transaction costs
disappear in the limit, but the ‘residual effect’ of the presence of transaction costs lingers. As a
result, we get a parabolic initial boundary value problem. This approach is the same as the one
Wilmott et al. (1993) used in deriving a partial differential equation when there are transaction
costs. The difference in our case is that we let the transaction costs vanish fast enough so that the
nonlinear term in the equation disappears as the interval of discretization becomes zero. This is
somewhat similar to obtaining a solution of the Euler equation by arti�cially adding the viscosity
term in the equation and letting the viscosity get to zero. This kind of solution is called a vanishing
viscosity solution in �uid mechanics, and in this spirit, we also call our method a ‘vanishing
transaction cost technique.’

Next, we justify that the valuation obtained in this way can be interpreted as representing the
‘value’ of the contingent claim. To be more speci�c, we form a portfolio consisting of stocks and
bonds rebalanced with the delta hedging method using the solution of the above mentioned initial
boundary value problem. We then show that this portfolio minus transaction costs replicates the
contingent claim in the sense that the hedging error vanishes almost surely as the interval of
discretization becomes zero.

This section is organized as the previous section. We �rst describe the intraday valuation method,
which results in a certain initial boundary value problem of a linear parabolic partial differential
equation. The multiday valuation works exactly the same as in Section 3.

4.1. Intraday valuation

Assume that a stock price in a single day is represented as the solution of the following
stochastic differential equation

dS t=S t ˆ l I (a,b)(S t )dt ‡ r I (a,b)(S t )dB t ‡ d 1du t - d 2dw t

Ifagdt ˆ r1du t

Ifbgdt ˆ r2dw t

which is introduced in Section 2. Recall d i . 0 indicates that a boundary is not absorbing and ri

represents the rate of sojourn of S t on the boundary. We assume that ri . 0, which means that a
boundary is not instantaneously re�ecting.

We �rst derive a Leland type result. In other words, we’ll �nd a hedging strategy that make the
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hedging error tends to zero as D t !0. To handle the local times as D t !0, we write the stock
price process as follows.

dS
S

ˆ l I(a,b)(S )dt ‡ r I (a,b)(S )dB t ‡ d 1

r1
Ifag(S )dt -

d 2

r2
Ifbg(S )dt (6)

Then, over a small interval D t, this process satis�es the following discrete equation

D S
S

ˆ l I (a,b)(S )D t ‡ r I (a,b)(S )U ( D t)
1
2 ‡ d 1

r1
Ifag(S )D t -

d 2

r2
Ifbg(S )D t ‡ O( D t3=2)

where U is a normally distributed random variable with mean zero and variance one. Here, the
expression O( D t3=2) has the following meaning; the random variable X is said to be O( D t3=2) if
limsup= D t!0 E(X )= D t3=2 is bounded by some constant C independent of D t. In general, it can be
shown that for a process Z satisfying dZ=Z ˆ g dt ‡ s dBt

log
Z(t ‡ D t)

Z(t)
ˆ log Z(t ‡ D t) - log Z(t)

ˆ
… t‡ D t

t
g dt ‡ s dB t -

1
2

… t‡ D t

t
s 2dt

ˆ g D t ‡ s U ( D t)
1
2 -

s 2

2
D t

and Z(t ‡ D t)=Z(t) ˆ 1 ‡ g D t ‡ s U ( D t)1
2 ‡ O( D t3=2) by Taylor’s theorem. This can be easily

checked since every moment of U is �nite and g , s are constants. Let k represent the rate of
transaction cost which is proportional to the value of assets traded, and we can also assume that
k vanishes suf�ciently fast as D t becomes zero. Precisely, we assume k is O( D t).

Although we have not so far justi�ed the concept of ‘value’ of the contingent claim in this
setting, let us nonetheless let C be its ‘value.’ Our job is to justify in what sense the word ‘value’
can be used, and if so, to derive an equation which the ‘value’ satis�es. As is the case with the delta
hedging in the usual use of the Black–Scholes formula, let P be a portfolio consisting of
N ˆ (@C=@S ) shares of stocks and B ˆ C - (@C=@S )S dollars of risk-free security over the interval
D t.

Over the interval D t, the return of portfolio P will be

D P ˆ N D S ‡ Br D t ‡ O( D t2)

ˆ CS S
D S
S

‡ (C - CS S )r D t ‡ O( D t2)

where the term O( D t2) comes from the continuous compounding of interest. The change in the
value of the contingent claim C will be

D C ˆ C(S ‡ D S, t ‡ D t) - C(S, t)

ˆ CSS
D S
S

‡ 1
2

CSS S2 D S
S

2

‡C t D t ‡ O( D t3=2)
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Note that the expression O( D t3=2) is written as in the equation for D S=S using the same
argument together with the fact that the price movement is bounded. The hedging error D H over
the interval D t is

D H ˆ D P - D C - kj(S ‡ D S )D N j

Apply Taylor’s theorem for small D S and D t to have

kj(S ‡ D S )D N j ˆ kj(S ‡ D S )(CS(S ‡ D S, t ‡ D t) - CS(S, t))j

ˆ kj(S ‡ D S )CSS(S, t)D Sj ‡ O( D t3=2)

ˆ k CSS S2 D S
S

‡ O( D t3=2)

Then,

D H ˆ (C - CS S )r D t -
1
2

CSS S2 D S
S

2

- C t D t - k CSS S2 D S
S

‡ O( D t3=2)

Substituting for D S=S gives

D H ˆ (C - CS S )r D t -
1
2

CSS S2 r 2I (a,b) U
2 D t - C t D t - kjCSS S2 r I (a,b) U ( D t)

1
2j ‡ O( D t3=2)

Observe that the terms which represent the boundary conditions become O( D t2) due to the fact
that k ˆ O( D t). Therefore, taking expectation we have

E( D H ) ˆ (C - CS S )r -
1
2

CSS S2r 2I (a,b)(S ) - C t -
2
p

1
2 k

( D t)1
2

jCSS S2jr I (a,b)(S )

Á !

D t

‡ O( D t3=2)

Now take D t !0. Then the last term in the above equation vanishes as k ˆ O( D t). We require
C to satisfy

(C - CS S )r -
1
2

CSS S2 r 2I (a,b)(S ) - C t ˆ 0

Then, following the argument of Wilmott et al. (1993), we can conclude that the expectation of
the in�nitesimal hedging error becomes zero. The above equation can be rewritten as

@C

@ t
(S, t) ‡ 1

2
r 2S2 @2C

@S2
(S, t) ‡ rS

@C

@S
(S, t) - rC(S, t) ˆ 0

C(S, T ) ˆ Y (S )

@C

@ t
(a, t) ‡ ra

@C

@S
(a, t) - rC(a, t) ˆ 0

@C

@ t
(b, t) ‡ rb

@C

@S
(b, t) - rC(b, t) ˆ 0

9
>>>>>>>>>=

>>>>>>>>>;

(IBP)
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for (S, t) 2 [a, b] 3 [0, T ].
The derivation of (IBP) above is a heuristic one. We now justify that the solution of the above

(IBP) can be indeed used as representing the ‘value’ of the contingent claim. Namely, we have the
following result:

Theorem 5

Let C be the solution of (IBP) above, and let P be a portfolio which, over the interval D t, consists of CS

shares of stocks and C - CS S dollars of risk-free security. If the transaction cost rate k is assumed to
vanish suf� ciently fast as D t becomes to zero, e.g., k ˆ O( D t). Then the hedging error in replicating the
contingent claim with this security together with the transaction costs vanishes almost surely as
D t !0. In this sense, it is justi� able to say that the solution C represents the ‘value’ of the contingent
claim.

Proof

Since C satis�es (IBP), we have

E( D H ) ˆ O( D t3=2)

Since E( D H2= D t2) , C for some constant C, the law of large numbers, referred to Feller (1971),
implies

XT - D t

tˆ0

D H t !0 a:s:

where D H t is the hedging error over [t, t ‡ D t] and T is the time to maturity. Therefore, the
hedging error over the period [0, T ] vanishes almost surely as D t !0.

4.2. Multiday valuation

The multiday valuation in this case works exactly the same as given in Section 3.2. The only
difference is that in this case (IBP) above is used instead of the initial boundary value problem
in Theorem 4.

5. Conclusion

The market with daily price limit presents a challenging problem in the theory of option
valuation mainly because of the presence of the arbitrage opportunities. In the normal application
of the arbitrage pricing theory, this makes the options valuation impossible. However, adopting
the technique which we call the ‘vanishing transaction cost technique,’ of introducing transaction
cost for a discretized problem and letting the transaction cost vanish suf�ciently fast as the size
of the discretization interval shrinks to zero, we were able to devise a scheme of successively
applying the solution of a certain initial boundary value problem for a parabolic partial
differential equation. We then justi�ed this valuation result as representing the ‘value’ of the
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contingent claim in the sense that the hedging error becomes zero as the size of the
discretization interval shrinks to zero.
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