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Abstract. We explain why and how to deal with the definition, acceptability and
computation of risk in a multitemporal way. Coherence axioms provide a repre-
sentation of a risk-adjusted valuation. The multiperiod extension of Tail VaR is
discussed.

1 New Questions with Multiperiod Risk

RISK EVOLVING OVER SEVERAL PERIODS of uncertainty requires con-
sideration of new issues, since:

e availability of information may require taking into account intermediate
monitoring by supervisors or shareholders of a locked-in position,

e the possibility of intermediate actions and or availability of extraneous
cash flows, require handling sequences of unknown future “values”,

e risk measure at one date may involve, unknown, risk measures at later
dates.

2 Review of One Period Coherent Acceptability

COHERENT ONE PERIOD RISK ADJUSTED VALUES’ theory is best
approached (see [2], p. 69, [3], Section 2.2) by taking the primitive object
to be an “acceptance set”, that is a set of acceptable future net worths,
also called simply “values”. This set is supposed to satisfy some “coherence”
requirements. If for simplicity we assume (as well as in following sections) a
zero interest rate, the representation result states that for any acceptance set,
there exists a set P of probability distributions (called generalised scenarios
or test probabilities) on the space {2 of states of nature, such that a given
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position, with future (random) value denoted by X, is acceptable if and only
if:

For each test probability P € P, the expected value of the future net worth
under P, i.e. Ep[X], is non-negative.

The risk-adjusted value w(X) of a future net worth X is defined as follows:

e compute, under each test probability P € P , the average of the future
net worth X of the position, in formula Ep [X],
e take the minimum of all numbers found abovei.e. 7(X) = infpep Ep [X].

The axioms of coherent risk measures (see[2]), translate for coherent risk-
adjusted values into:

monotonicity: if X > Y then n(X) > n(Y),

translation invariance: if a is a constant then 7(a -1+ X) = a + n(X),
positive homogeneity: if A > 0 then 7(A - X) = A - 7(X),
superadditivity: 7(X +Y) > n(X) + n(Y).

3 Coherent Multiperiod Risk Adjusted Value

THE CASE OF T PERIODS OF UNCERTAINTY will be described here in
the language of trees. We represent the availability of information over time
by the set (2 of “states of nature” at date T and, for each date t =0, ..., T,
the partition N; of 2 consisting of the set of smallest events which by date
t are declared to obtain or not. These events are “tagged” by the date ¢ and
are called the nodes of the tree T(2) at date t. We use for such a node n the
notation (n,t(n)) or n x {t(n)}.

The partition Ay, is a refinement of the partition N; and this provides
the ancestorship relation of (m,t) to (n,t + 1) by means of the inclusion
ncCm.

For example, the “three period (four date) binomial tree” can be de-
scribed by N3 = {[uuu], [uud], [udu], [udd), [duu], [dud], [ddu], [ddd])}, N3 =

{[uu], [ud], [du], [dd]}, N1 = {[u], [d]}, No = {[]}-

Remark 1. The binomial tree is misleadingly simple. It may well happen that
some node n of date ¢ stops branching. We then have to distinguish (n, t) and
(n,t+1).

SEQUENCES OF “VALUES” at dates 0, ..., T will be the object of study.
They are, as (adapted) stochastic processes, functions on the tree 7 (£2). The
restriction of such a function X to the set AN; of nodes at date ¢ is also
considered a function on {2, denoted by X;. Then X(n) denotes (with some
redundancy) the “value” at date t in the “node” or event n as well as in any
of the states of nature belonging to n. It is also interesting to view the process
X = (X¢)o<t<T as a function on the product space {0, 1, ...,T'} x £2 which
happens for each date to be constant in any node of this date: X;(w) = Xy¢(w')
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as soon as there exists a node n at date ¢ with both states w and w' belonging
to n.

We obtain from any probability P on 2 (with P [{w}] > 0 for each w € 2
for simplicity) a probability P+ on T (£2) by the definition relative to each
node n:

Prlfn}] = 7 3 Plw)].

wEn

For each function Y on 7 (f2) we have the formula:

1
Ep, [Y]= —— Ep [V}
]PT [ ] T + 1 Z P [ t]
0<t<T
For each probability P on (2, each date ¢t and each random variable X the
conditional expectation at date ¢t of X is the function on A; (or equivalently

the function on {2 which is constant on every node of A;) defined by:
Ep [X7 | Ni] (n) = Ep [X7 | n].

A SUPERVISOR, risk manager or regulator, will as in the one-period
case decide at date 0 upon a set of acceptable “Values”, a subset of the set
Gr of all value processes. There are many interpretations of the meaning of
“value”: as, for examples, market values of equity, accounting values of equity,
cumulative cash flows, liquidation values, surplus, actuarial values.

SOLVENCY is an important concern. For the “value” (X¢),.,«r of a
portfolio or of a strategy, one defines formally the “insolvency time” o =
inf{t|X: < 0,1 <t < T}, and the stopped process X equal to X; before
the time ¢ and to X, from time o on. When X is a market value, one
may say that risk measurement balances the costs of insolvency with the
benefits of risk-taking. With a liquidation value, one may imagine that after
“insolvency” time, there may be more favorable dates and events where to
close the business.

A COHERENT ACCEPTANCE SET of “values” is a closed convex cone
Ace in Gr, with vertex at the origin, containing the positive orthant and
intersecting the negative orthant only at the origin. As in the framework of
one-period risk we define the risk adjusted valuation associated with the cone
Acc by computing for each “value” process X the number 7(X) = sup{m |
X —m € Ac}. This reflects the fact that risk adjusted value is the largest
amount of capital which can be subtracted from the project X and still leave
it acceptable. The assumptions on A.. ensure that the the risk adjusted
valuation is coherent, i.e. satisfies the four conditions listed at the end of
Section 2.

The incorporation of time via the tree 7 ({2) allows us to directly deduce
from the study of the one-period case that there exists a set Py of probabil-
ities on T ({2) such that:

for each X € G, n(X) = P iIelf;) Ep, [X].
T T
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Each “test probability” P+ € Py can be described by its density fr =

dPr s dPr — Pr(n) :
iPor with respect to Py, 7, where d]Po,T(n) = Born) for each node n in

T (£2). This density has to be a function f7 on the tree 7 (2), and we represent
it as fr = (ft)g<s<r Where each f; is a positive function on N, such that
ZOStST T+F1EIP0 [ft] =1
We then have by definition for each process X, Ep, [X] = Y o< <1 727 Ep, [fi Xd]-
Defining the increasing process A by A; = A;_1 + T%qfta with A_; =0, we
get Ep, [Ar] = 1 and we obtain the:
REPRESENTATION RESULT: For each coherent risk-adjusted valuation
w there is a set A of positive increasing processes A with Ep, [Ar] =1 such
that for each value process X its date O risk-adjusted value w(X) is given by:

7T(X) = filgf.:llE]PO 0<t2<TXt . (At - At—l)

Ezample 1. A stopping time o defines (if IPg [ < T] > 0) an increasing pro-
cess A by AZ =0 and by A7 = ml{gst} for 0 < t < T, where for any
event F, 1g(w) =1 or 0 depending on whether or not w € E. The coherent
risk-adjusted value given by 7(() X) = Ep, [X,]is also Ep, [EOStST X (A7 —

A7),

Ezample 2. For any random time 7 the process A” defined by A] = A7 ; +
Ep, [1¢, | M{] with C; = {7 = t}, we have for each process X, Ep, [Zo<t<T Xy - lct] =

Ep, [EOStST X, - (A7 - AZA)] . Using the random time 7(w) = argmin; (X (w))
we find that for the risk-adjusted valuation 7(()X) = Ep, [info<;<7 X¢] we
have

r(OX) =infEp, | Y Xi- (A7 - A7)
i 0<t<T

Remark 2. One could consider more general acceptance sets than convex
cones, as was done in [4] to represent the risk measurement constraints im-
posed by the shareholders of a firm.

4 Two Multiperiod Risk Adjusted Measurements of a
Final Value

THE ABSENCE OF INTERMEDIATE MARKETS or any other form of
“locked-in” position provides a situation different from the one studied in
Section 3. The model is a sequence (Nt),<,<r Of the sets of nodes and one
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“final value” X, i.e. a mere function on N7 = 2. No change can be made
to the position but information is revealed over time and the risk manager
anticipates this fact concrning the acceptance decision at date 0. The one-
period analysis of [3] would consist, starting from a set P of test probabilities
on 2, in defining the number ¢o(X7) = infpep Ep [X7]. The same analysis
applied at a later date ¢, would, at that date, define the “date t risk-adjusted
value” ¢;(Xr) as infpep Ep [X7| V], defining therefore a risk-adjusted value
process (¢t(XT))0§t§T-

Another construction of a risk-adjusted value is built by backward in-
duction from the same set P of test probabilities on (2. For any final value
X7, we define the process ¢(Xr) by the equality ¥r(X1) = X7 and by the
recurrence relation

Ye(XT) = ]grelga Ep [¢1(XT) [ N;],0<t < T.

Section 5 provides conditions on the set P of test probabilities under
which for each X7 the processes ¢ and v are equal.

5 Recursivity of Risk Measurement and Stability of
the Set of Test Probabilities

It can be shown that for a set P of test probabilities the following two prop-
erties “stability” by pasting and “recursivity”, are equivalent.

STABILITY BY PASTING means that if for any date ¢t we are given for
each node n in N; a probability IP,, in P, conditioned by this node n, the
pasting of all these conditional probabilities with any probability Py in P
restricted up to time ¢, still provides an element of P.

A simple binomial example of pasting, with T'= 2, ¢t =1, n
nz = (dal)a H:)0 = (%7 %7 %7 %)7 Pl = (07 %J %J %) and 1P2 = (%7 %7 %70)1 the
resulting pated probability being P = (0, 3, 3,0).

The pasting of probabilities amounts to looking over successive time inter-
vals or, at the same date, over disjoint events, at the risk attitudes of various
agents.

RECURSIVITY means that for each random variable Xt on (2 and for
each0<t<T—-1:

225 Br [ [ M= 1l B | Jof, B DX [ AT 1A

Using this equality, we obtain for the risk-measurement process ¢ introduced
in Section 4 out of a set of test probabilities on (2:

¢ X = inf Ep [X
t( i ) ]I;EF P [ T | 'A/t] )
the recurrence relation:

¢1(Xr) = inf Ep [$r41(X7) | N4]
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and therefore the equality of the processes ¢(Xr) and ¥(Xr).

If the recursivity property holds two final values with the same risk-
adjusted value at date 1 in every node, will have the same risk-adjusted
value at date 0 and if a final value is acceptable in any node of date 1 it will
be acceptable at date 0.

6 Discussion of Tail Value at Risk in the Multiperiod
Case

TAIL VALUE-AT-RISK (see [1], [2], [3]) has become popular, in particular
in the Credit Risk field, and has been used for a specifc multiperiod risk
measure definition (see [5]). The best definition of “TailVaR” is in terms of a
set of test probabilities, but this set does not fulfill the “stability by pasting”
property.

For example, in Section 5, the set P generating the date 0 tail value-at-
risk with level a equal to 2, is the set of probabilities havings densities with
respect to IPg bounded by = = %. The three probabilities used in the example
have respectively the densities (1,1,1,1), £(0,4,4,4), and £(4,4,4,0). The
pasted probability has the density (0,2, 2,0) which is not bounded by %.

At intermediate (date,event) nodes the similar, direct, computation of
TailVaR follows neither the line of construction of the ¢; nor the one of the
iy of Section 4. There is also non-recursivity: two date 2 future values may
have different Tail-VaR at date 0 and the same Tail-VaR (as random variable)
at date 1:

2 = {[uu], [um], [ud], [du], [dd]}, P = {0.487, 0.01, 0.003, 0.4955, 0.0045},

N = {[ul, [d]}, No = {0}

Xz = 1, Ya((uul) = Ya([du]) = 10, Ya([um]) = 2.5, Ya([ud]) = Ya([dd]) = 0.

We find for Y, the TailVaR values (at the 1% level) at date 0 and at date
1:

1
TailVaR(Yz)([)) = 5oz - (00045 +0.0030) - 0 +-0.0025 - 2.5) = 0.625

TailVaR(Y2)([u]) =1, TailVaR(Y2)([d]) = 1.

Another potential weakness of Tail-VaR is the fact that TailVaR(XT)
depends only on the distribution of Xr.
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7 Representation of Stable Sets of Test Probabilities

Stability of test probabilities can be characterized when the information
structure is given by a binomial tree and a random walk Wy = Uy +...4+ U, 0 <
t <T, the (U)g<y< being 1 valued independent variables with symmetric
distribution. Lef Py be the resulting measure on (2.

REPRESENTABILITY of a set P of test probabilities is defined here
as follows. There exists for each ¢, 0 < t < T a random closed convex set
Q, 0 <t < T of [-1,+1] depending in a N;_;-measurable way, such that:

The random variable Z = [[q<,«r(1+q:Us) is the density with respect to
Py of an element of P if and only if each q; belongs to Q.

This property is equivalent to the stability property of P as well as to the
recursivity property for the computations.

For example the set of test probabilities may be the set of probabilities
Q such that = Zr satisfies Z; = Ep, [Zr | M) = 1+ quU1)...(1 + ¢ Uy)
where ¢ is a predlctable process with §; < g < 8o, with —1 < d; < 6y <1
two given numbers.

THE RECURRENCE RELATION becomes when 61 = —d2 = § > 0:

Y(Xr) =  inf  Ep, [(1+ g1 Ug1)¥e1 (X7) | M

Q415 qe+1]<0

for 0 <t < T —1, an easy form not requiring much storage at the nodes. In
node n of date ¢, ¥7(Xr) will be computed as:

G (Xr) =05 inf (14 gl) e (Xn) + (1= gif) -0 (X))

qtn+1 3 ‘ qtn+1 |S

which reduces to

5-(146) min{yp{ (X7), 1P (X7) }40.5-(1=6) max{p 1 (Xr), v (X
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