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A B S T R A C T

This paper studies the effectiveness of estimating credit rating transition matrices using sequence-based
clustering on historical credit rating sequences. The data set used in this study consisted of monthly credit
rating sequences from Korean companies from 1986 to 2018. The credit rating sequences were converted to
sequence matrices and was clustered using PCA-guided K-means. Representative transition matrices of the
resulting clusters were then generated to be used in the classification process. The proposed clustering model
is evaluated under the 3 different long-term classification scenarios; 7 class credit rating prediction, credit
rating transition direction (upgrade, stay, or downgrade) prediction, and default behaviour prediction. All
three classification scenarios produced promising results suggesting that the representative transition matrix
of the 𝐾 clusters better describes future credit rating behaviour than a single transition matrix.
1. Introduction

This paper investigates the effectiveness of using historical credit
rating sequences to characterize companies in clustering and the re-
sulting transition matrices for the purpose of credit risk analysis. By
better utilizing historical credit rating sequences we can improve the
estimation of transition matrices. By using sequence matrices we group
firms with similar transition behaviour together, and firms exhibiting
any momentum in their transitions would belong to the same cluster.

Credit ratings and their revisions can lead to a number of major
decisions and hence, consequences. It is in one’s best interest to invest
in better forecasting techniques to mitigate any losses dependent on
credit ratings. In this paper we will be adapting the general clustering
methodology described in Park, Suresh, and Jeong (2008) and apply a
transition matrix estimation method to predict future credit behaviours
solely from historical credit ratings. Park et al. (2008) developed a
sequence representation scheme based on Markov models, enabling
sequences of web usage activities to be clustered using vector based
distances. This method is known as sequence-based clustering. As far as
we can tell, we are the first to study the application of sequence-based
clustering using K-means strictly on historical credit rating sequences.
The majority of models observed in literature use a snapshot of a com-
panies financial statement and fewer models use a historical sequence
of financial statements (Chen, Ribeiro, Vieira, & Chen, 2013).

Markov chains are commonly used in modelling the behaviour
of credit rating transitions over time. Jarrow, Lando, and Turnbull
(1997) were one of the first to model the term structure of credit risk
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spreads using Markov chains in both the discrete and continuous time
case. They estimated the transition probability matrix from historical
data by first estimating the generator matrix from a 1-year estimate
of transition probabilities provided from a credit rating agency. The
generator matrix can be estimated either implicitly from bond market
prices or from historical bond transition rating changes. Thomas, Allen,
and Morkel-Kingsbury (2002) extends the Jarrow–Turnbull model by
introducing a hidden Markov model for the term structure of credit
risk spreads. Kiefer and Larson (2004) tested the effectiveness of using
a time-homogeneous Markov model to describe the credit rating transi-
tions of municipal bonds, commercial papers, and sovereign debt. They
have found that the time-homogeneous Markov model can adequately
describe credit rating transitions of municipal bonds over a period of
5 years and commercial papers over a period of 6 months. Credit rating
transitions for sovereign debt is also adequately described by Markov
models but this conclusion may be the result of the low number of data
samples. Dharmaraja, Pasricha, and Tardelli (2017) introduces a hybrid
Markov model where they incorporate the asset value of the firm in the
transition probabilities of credit ratings. Sharma, Jadi, and Ward (2018)
investigates the financial performance of insurance companies by using
credit rating transition matrices under a Markov model, noting that less
risky rating grades result in more rating stability.

Studies have shown the promising results that clustering can pro-
duce in the context of credit risk and credit rating predictions. In a
study by Guo, Zhu, and Shi (2012), they compared their proposed sup-
port vector domain description (SVDD) combined with fuzzy clustering
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model with other kinds of support vector machine learning techniques
in the context of corporate credit rating classification. The performance
of each model was evaluated based on the hit-ratio, the ratio of the
number of correct classifications and the overall number of classifica-
tions. The variables used as the input of the model are bond-rating data
sets from the Korean and Chinese markets. The variables range from
shareholder’s equity to cash flow from operating activities. Chen et al.
(2013) use a trajectory clustering procedure consisting of two consec-
utive self-organizing maps (SOM) processes. Their method allows for
the visualizations of the bankruptcy trajectories of companies enabling
a unique perspective and insight on bankruptcy influences. Their model
clusters financial statements containing 29 financial ratios of companies
spanning 3 years. Morales, Rodríguez, and Montero (2015) applied dif-
ferent fuzzy classification methods for the use in rating classifications.
They use both credit ratings and financial statement ratios in their
model. Irmatova (2016) introduces a relative attribute rating model
(RELARM) based on relative PCA attributes and K-means clustering.
Using 9 financial and economic parameters, their model assigns ratings
based off the ranked projections of the cluster centres onto a rating
vector. In the case of long-term credit rating prediction, the true rating
that a firm receives in the future will not be known until that future
date arrives. During this period, new credit rating information may
become available. Kuncheva and Sánchez (2008) terms this type of
problem as delayed labelling and investigates the effectiveness of online
nearest neighbour classifiers for treating delayed labelling problems.
Plasse and Adams (2016) developed an online linear discriminant
analysis algorithm which was applied to a real world consumer credit
data set where delayed label information was introduced synthetically.
Montiel, Bifet, and Abdessalem (2017) proposed two over-indebtedness
risk prediction frameworks, one of which treats over-indebtedness as a
streaming learning problem. Although not done in this study, we may
be able to extend our model to consider delayed labelling by treating
credit rating sequences as a streaming data problem.

The remainder of this paper is organized into 5 sections. In Section 2
we discuss the theory behind our proposed model. In Section 3 we
provide an overview of the three different classification scenarios that
our model will undertake. In Section 4 we introduce the data to be used,
and describe the specific methods of the experiments. In Section 5 we
present the results and discussions of our proposed model. Finally we
conclude the study in Section 6.

2. Sequence-based clustering

In this section, we describe the methods for sequence-based cluster-
ing. We begin by defining the sequence matrices and their properties.
The Sequence matrices will be the main objects that are being clustered.
We then describe credit rating transition matrices as these will be
used in the classification algorithm. Finally, we go over the K-means
clustering method used in this study.

2.1. Sequence matrices for credit ratings

We introduce sequence matrices in order to measure the distance
between the historical patterns of credit ratings of firms. Consider an
𝑛-state time-homogeneous Markov chain where each state represents a
particular credit rating. In order to begin clustering these objects, we
utilize the representation of sequence vectors and sequence matrices
introduced in Park et al. (2008).

Definition 2.1.1. Let 𝑚 ∈ N, 𝑋𝑚
1 , 𝑋

𝑚
2 ,… , 𝑋𝑚

𝑇 be a sequence of random
variables, and  be the state space. Then the sequence vector of length
𝑇 ∈ N is the vector 𝐱𝑚(𝑇 ) = (𝑋𝑚

1 , 𝑋
𝑚
2 ,… , 𝑋𝑚

𝑇 ) for some firm 𝑚 with
tates 𝑋𝑚

𝑖 ∈ .
2

Definition 2.1.2. Let 𝑁𝑖𝑗 be the number of transitions from state 𝑖 to
𝑗 for some firm 𝑚 with the sequence vector 𝐱𝑚(𝑇 ). The corresponding
equence matrix 𝐒𝑚 is then an 𝑛 × 𝑛 matrix whose entries are denoted
y

𝑚(𝑖, 𝑗) =

⎧

⎪

⎨

⎪

⎩

𝑁𝑖𝑗
∑

𝑗 𝑁𝑖𝑗
if 𝑁𝑖𝑗 > 0,

0 if 𝑁𝑖𝑗 = 0,
(1)

and so, the entries represent the relative frequency of transitions from
state 𝑖 to 𝑗.

Therefore, given a sequence vector 𝐱𝑚(𝑇 ) we can generate the
corresponding sequence matrix 𝐒𝑚. This sequence matrix describes the
frequency of transitions of the given sequence vector.

In the context of credit ratings, there tends to be few credit rat-
ing transitions over the period of 𝑇 leading to sparse credit rating
sequences. An extreme example of this observation would be one where
a firm takes only one rating for the entire period of 𝑇 . Suppose 𝑋𝑡 = 2
for 𝑡 ≤ 𝑇 , then the resulting sequence matrix would contain a single
entry at 𝑆(2, 2) = 1 and 𝑆(𝑖, 𝑗) = 0 everywhere else.

Now we present some general properties of sequence matrices when
using the Euclidean distance measure for the comparison of different
sequence matrices. The Euclidean distance measure is used to measure
the distance between the historical patterns of credit ratings for the
firms. We consider a time-homogeneous Markov chain 𝑋 with state
space  = {1, 2,… , 𝑛}. For a sequence matrix, the sum of the entries
in a nonzero row is 1, i.e., 𝑆𝑚(𝑖, 𝑗) = 0 for all 1 ≤ 𝑗 ≤ 𝑛 or,
𝑛
∑

𝑗=1
𝑆𝑚(𝑖, 𝑗) = 1.

Lemma 2.1.1. Consider a vector (𝑎1, 𝑎2,… , 𝑎𝑛) that satisfies
∑𝑛

𝑖=1 𝑎𝑖 = 1.
(a) The minimum value of∑𝑛

𝑖=1 𝑎
2
𝑖 is

1
𝑛 and it is achieved at (

1
𝑛 ,

1
𝑛 ,… , 1𝑛 ).

(b) If 0 ≤ 𝑎𝑖 ≤ 1 for all 𝑖, then the maximum value of ∑𝑛
𝑖=1 𝑎

2
𝑖 is 1, that

is,

1
𝑛
≤

𝑛
∑

𝑖=1
𝑎2𝑖 ≤ 1.

Proof. By the Cauchy–Schwarz inequality,
( 𝑛
∑

𝑖=1
𝑎2𝑖

)( 𝑛
∑

𝑖=1
12
)

≥

( 𝑛
∑

𝑖=1
𝑎𝑖

)2

Since ∑𝑛
𝑖=1 𝑎𝑖 = 1,

𝑛
∑

𝑖=1
𝑎2𝑖 ≥

1
𝑛

where the equality holds when 𝑎𝑖 =
1
𝑛 , 𝑖 = 1,… , 𝑛. For the maximum

value, we consider
𝑛
∑

𝑖=1
𝑎2𝑖 =

( 𝑛
∑

𝑖=1
𝑎𝑖

)2

−
𝑛
∑

𝑖≠𝑗
𝑎𝑖𝑎𝑗 .

Since 0 ≤ 𝑎𝑖, 𝑎𝑗 ≤ 1,

𝑛
∑

𝑖=1
𝑎2𝑖 ≤

( 𝑛
∑

𝑖=1
𝑎𝑖

)2

= 1. □

Next we consider two sequence matrices 𝐒𝑚1 and 𝐒𝑚2 that represent
Markov chains 𝑋𝑚1 and 𝑋𝑚2 where each state refers to credit ratings
of firm 𝑚1 and firm 𝑚2. Let 1 be the set of states where Markov chain
𝑋𝑚1 has ever visited for 𝑡 < 𝑇 , i.e.,

1 = {𝑖 ∶ 𝑆𝑚1
(𝑖, 𝑗) > 0 for some 𝑗}

= {𝑖 ∶ 𝑁𝑖𝑗 > 0 for some 𝑗} ⊂ 

Similarly, we let 2 = {𝑖 ∶ 𝑆𝑚2
(𝑖, 𝑗) > 0 for some 𝑗}. The corresponding

sequence matrices 𝐒𝑚1 and 𝐒𝑚2 for Markov chains 𝑋𝑚1 and 𝑋𝑚2 have
the following property.
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Theorem 2.1.1. Suppose that there is no intersection between 1 and 2,
i.e., 1∩2 = ∅, implying two Markov chains 𝑋𝑚1 and 𝑋𝑚2 have not visited
the same state. Then the Euclidean distance ‖𝐒𝑚1 − 𝐒𝑚2‖ between 𝐒𝑚1 and
𝐒𝑚2 is
√

2 ≤ ‖𝐒𝑚1 − 𝐒𝑚2‖ ≤
√

𝑛

roof. Let 𝑘 = |1| < 𝑛. Without loss of generality, we may assume
that

1 = {1, 2,… , 𝑘}

= {𝑖 ∶ 𝑆𝑚1
(𝑖, 𝑗) > 0 for some 𝑗}

hen1 the sequence matrix 𝐒𝑚1 is of the form

𝐒′𝑚1 O
O O

)

here 𝐒′𝑚1 is a 𝑘×𝑘 subsection of 𝐒𝑚1 and O is the zero matrix. We have
the Euclidean square distance between 𝐒′𝑚1 and the zero matrix is

‖𝐒′𝑚1‖
2 ≥ 1

𝑘
+ 1

𝑘
+⋯ + 1

𝑘
= 𝑘

𝑘
= 1

y using Lemma 2.1.1. Applying the same argument, the Euclidean
quare distance between 𝐒𝑚2 and the zero matrix is greater than or

equal to 1. Since 1 ∩ 2 = ∅, we get

‖S𝑚1 − S𝑚2‖2 ≥ 1 + 1 = 2

therefore, ‖𝐒𝑚1 − 𝐒𝑚2‖ ≥
√

2. On the other hand, by Lemma 2.1.1,
𝑘

𝑗=1
𝑆′
𝑚1(𝑖, 𝑗)

2 ≤ 1

or each 1 ≤ 𝑖 ≤ 𝑘 where 𝑆′
𝑚1(𝑖, 𝑗) are entries of S′𝑚1. Thus

‖S𝑚1‖2 = ‖S′𝑚1‖
2 ≤ 1 + 1 +⋯ + 1 = 𝑘.

Since 1 ∩ 2 = ∅, we have |2| ≤ 𝑛 − 𝑘 and ‖S𝑚2‖2 ≤ 𝑛 − 𝑘. Then

‖S𝑚1 − S𝑚2‖2 = ‖S𝑚1‖2 + ‖S𝑚2‖2 ≤ 𝑘 + (𝑛 − 𝑘) = 𝑛.

Therefore, ‖S𝑚1 − S𝑚2‖ ≤
√

𝑛. □

heorem 2.1.2. Suppose that two Markov chains 𝑋𝑚1 and 𝑋𝑚2 have not
made the same transition, i.e.,

{(𝑖, 𝑗) ∶ 𝑆𝑚1
(𝑖, 𝑗) > 0} ∩ {(𝑖, 𝑗) ∶ 𝑆𝑚2

(𝑖, 𝑗) > 0} = ∅.

Then the Euclidean distance ‖S𝑚1 − S𝑚2‖ between S𝑚1 and S𝑚2 is
√

2 ≤ ‖S𝑚1 − S𝑚2‖ ≤
√

2𝑛.

Proof. The argument is essentially the same as in Theorem 2.1.1. For
the upper bound,
𝑛
∑

𝑗=1
𝑆𝑚1(𝑖, 𝑗)2 ≤ 1

for each 1 ≤ 𝑖 ≤ 𝑛, so ‖S𝑚1‖2 ≤ 𝑛. Since 𝑆𝑚1(𝑖, 𝑗) × 𝑆𝑚2(𝑖, 𝑗) = 0 for
1 ≤ 𝑖, 𝑗 ≤ 𝑛, we get

‖S𝑚1 − S𝑚2‖2 = ‖S𝑚1‖2 + ‖S𝑚2‖2 ≤ 2𝑛.

Thus, ‖S𝑚1 − S𝑚2‖ ≤
√

2𝑛. □

Definition 2.1.3. For a sequence vector 𝐱𝑚(𝑇 ) = (𝑋𝑚
1 , 𝑋

𝑚
2 ,… , 𝑋𝑚

𝑇 ) of
ength 𝑇 for some firm 𝑚, it is said to be ascending if 𝑋𝑚

𝑡+1 ≤ 𝑋𝑚
𝑡 for all

< 𝑇 . The sequence vector 𝐱𝑚(𝑇 ) is said to be 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 if 𝑋𝑚
𝑡+1 ≥ 𝑋𝑚

𝑡
for all 𝑡 < 𝑇 .

1 This might not be the case when 𝑋𝑚1
𝑇 = 𝑗 and 𝑋𝑚1

𝑡 ≠ 𝑗 for all 𝑡 < 𝑇 . We
xclude this sequence here. In this special case, we have a slightly different
ound depending on 𝑘.
3

i

Note that there are at most two nonzero entries in each nonzero
row for sequence matrices corresponding to ascending or descending
sequence vectors. An ascending vector indicates the credit ratings of a
firm have been upgraded while a descending vector implies the credit
ratings have been downgraded. Credit rating sequences with ascending
or descending sequences are examples of sequences that exhibit rating
drift behaviour. As noted in D’Amico, Dharmaraja, Manca, and Pasricha
(2019), rating drift is more pronounced in downgrades rather than
upgrades.

2.2. Transition matrices for credit ratings

Credit rating sequences can be modelled as Markov processes. We
consider a discrete 𝑛-state time-homogeneous Markov chain. A transi-
tion probability is the conditional probability of a stochastic process
transitioning to one state given its current state, that is

𝑃𝑟{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} (2)

where 𝑋𝑡 ∈  is the credit rating at time 𝑡 ∈ N with state space
 = {1, 2,… , 𝑛}. A Markov chain must satisfy the Markov property.
The Markov property is stated as the following

𝑃𝑟{𝑋𝑡+1 = 𝑗 ∣ 𝑋0 = 𝑖0,… , 𝑋𝑡 = 𝑖𝑡} = 𝑃𝑟{𝑋𝑡+1 = 𝑗 ∣ 𝑋𝑡 = 𝑖𝑡}. (3)

The conditional probabilities 𝑃𝑟{𝑋𝑡+1 = 𝑗 ∣ 𝑋𝑡 = 𝑖} is called the one-
step transition probability and can be arranged in a matrix 𝐏 called
the transition matrix. With 𝑛 = ||, the transition matrix satisfies the
following properties

𝑃 (𝑖, 𝑗) ≥ 0 ∀𝑖, 𝑗 ≤ 𝑛, (4)
𝑛
∑

𝑗=1
𝑃 (𝑖, 𝑗) = 1 ∀𝑖 ≤ 𝑛. (5)

The Markov property implies that the transition probabilities only
depend on its current state. To calculate the probability of transitions
𝜏 steps into the future we use the following theorem (see for instance,
Taylor and Karlin (1998))

Theorem 2.2.1. Let 𝑃 𝜏 (𝑖, 𝑗) = 𝑃𝑟{𝑋𝑡+𝜏 = 𝑗 ∣ 𝑋𝑡 = 𝑖} and 𝑃 (𝑖, 𝑗) represent
the entry of a transition matrix 𝐏. Then 𝜏-step transition probability 𝑃 𝜏 (𝑖, 𝑗)
of transitioning from state 𝑖 to 𝑗 satisfy

𝑃 𝜏 (𝑖, 𝑗) =
∞
∑

𝑘=0
𝑃 (𝑖, 𝑘)𝑃 (𝜏−1)(𝑘, 𝑗) (6)

here we define

(0)(𝑖, 𝑗) =

{

1 if 𝑖 = 𝑗,
0 if 𝑖 ≠ 𝑗.

Eq. (6) represents matrix multiplication and using transition matri-
es 𝐏 we have the equivalent representation 𝐏𝜏 = 𝐏 × 𝐏(𝜏−1). Given the
ssumption of time-homogeneity we can then write more generally
𝜏 = 𝐏 × 𝐏 ×⋯ × 𝐏 = (𝐏)𝜏 . (7)

herefore, using Eq. (7) one can obtain the transition probabilities for
ny 𝜏-step transition.

Given the clusters of credit rating sequences formed from the K-
eans algorithm one can generate transition matrices based on the
embers of the respective clusters. The industry standard for esti-
ating transition matrices from credit rating sequences is the cohort

pproach (Christensen, Hansen, & Lando, 2004; Gunnvald, 2014).

efinition 2.2.1 (Cohort Approach). Let 𝑛 = ||, {𝐱𝑚(𝑇 ) ∣ 𝑚 ≤ 𝑀𝑘 ∈
, 𝑘 = 1, 2,… , 𝐾} be the set of credit rating sequences in cluster 𝑘 with
total of 𝑀𝑘 members,  = {𝑡𝑙 ∣ 0 ≤ 𝑙 ≤ 𝑇 with 𝑡𝑙 < 𝑡𝑙+1} be the set

f equally spaced observed time points of the credit ratings 𝐱𝑚(𝑇 ) used

n constructing the representative transition matrix. Then we define the
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transition period 𝛥𝑡 by 𝑡𝑙+1−𝑡𝑙. That is, 𝛥𝑡 is the shortest period between
ny two time points. Then the representative 𝛥𝑡-year transition matrix
f the 𝑘th cluster, 𝐏𝑘(𝛥𝑡) is an 𝑛 × 𝑛 matrix whose entries are denoted
y

𝑘(𝑖, 𝑗) =

∑

𝑡𝑙∈ 𝑁𝑖𝑗 (𝑡𝑙)
∑

𝑡𝑙∈ 𝑁𝑖(𝑡𝑙)
, (8)

here 𝑁𝑖𝑗 (𝑡𝑙) is the number of companies that had transitioned from
tate 𝑖 to 𝑗 in the 𝛥𝑡 period, 𝑁𝑖(𝑡𝑙) is the total number of companies
hose current state was 𝑖 at time 𝑡𝑙.

To generate longer period 𝛥𝑡-year transition matrices one can re-
efine 𝛥𝑡 by 𝑡𝑙+2 − 𝑡𝑙 instead. Consequently, a drawback of the cohort
pproach is the possibility of completely missing the existence of a
articular credit rating in time if we choose to sample points when 𝛥𝑡
s large. For example, suppose we have a credit rating sequence 𝑋 =
1, 5, 1, 1, 1, 1, 1) with times 𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6 corresponding to the dates
000, 2001, 2002, 2003, 2004, 2005, 2006. In our example, we will
enerate our transition matrices by sampling time points 𝑡0, 𝑡2, 𝑡4, and
6. The observed credit rating sequence used in the estimation of the
ransition matrix is then 𝑋𝑜𝑏𝑠 = (1, 1, 1, 1). Therefore, the transition to
nd from credit rating 5 will be completely missed using the estimated
-year transition matrix.

An alternative approach that captures the intermediate transitions is
he duration approach. The duration approach first estimates the transi-
ion matrix by taking the matrix exponential of an estimated generator
atrix (Gunnvald, 2014; Lando & Skodeberg, 2002). The difference

etween the cohort and duration approach has been intensively studied
y Jafry and Schuermann (2004). They have noted that the cohort
pproach overestimates default probabilities (the last column of the
ransition matrix) for less risky rating categories and underestimates
efault probabilities for the most risky rating categories. By generating
bond portfolio of 400 exposures, they have also concluded that

gnoring the efficiency gain in the duration approach is more damaging.

.3. Clustering algorithm: K-means

In our model, we will be making use of a variant of the K-means
lgorithm to cluster our data set. The purpose of clustering is to
artition the firms into groups that share similar transition behaviours
n their respective credit rating sequences. The base K-means algorithm
s a popular choice in many applications due to its ease of imple-
entation, simplicity, efficiency, and empirical success (Jain, 2010).
iven the assumption that credit rating sequences can be modelled
y an 𝑛-state time-homogeneous Markov chain, it may be natural to
mmediately consider clustering transition matrices of the individual
irms. Unfortunately, using Euclidean distance to compare transition
atrices leads to the mis-clustering of firms who do not experience

ny transitions in their credit rating sequence but belong to different
redit ratings at the same time. For example, let 𝐱1 = (2, 2, 2, 2, 2) and
2 = (5, 5, 5, 5, 5) then the respective transition matrices 𝐏′

1, and 𝐏′
2 are

′
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐏′
2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As the above matrices are transition matrices they must satisfy
roperties (4) and (5) and hence the resulting matrices are the identity
atrix. Calculating the Euclidean distance we have ‖

‖

‖

𝐏′
1 − 𝐏′

2
‖

‖

‖

= 0 de-
4

pite being two firms with completely different credit rating sequences.
f instead we generated the sequences matrices 𝐒1 and 𝐒2 for 𝐱1 and 𝐱2
espectively

1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐒2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

sing the Euclidean distance between 𝐒1 and 𝐒2 results in ‖

‖

𝐒1 − 𝐒2‖‖ =
2. Hence, by using sequence matrices, we circumvent this problem

s two firms having experienced no transitions over the period 𝑇 will
be considered ‘‘far’’ from each other in Euclidean norm. Therefore, by
using the Euclidean distance measure on sequence matrices instead of
transition matrices, the differences between the resulting clusters will
have a more intuitive interpretation.

In the conventional K-means clustering algorithm the initial clus-
ter centroids are chosen completely randomly. Because the resulting
clusters are highly dependent on the initial cluster centroids, the ini-
tialization of the cluster centroids is an important question to answer.
To improve the initialization of the clustering process we choose to
instead use PCA-guided K-means (Xu, Ding, Liu, & Luo, 2015). The idea
of PCA-guided K-means is that the optimal solution to the minimization
problem lies in space known as the PCA-subspace, a smaller space than
the original space. To implement this algorithm, we first cluster our
data in the PCA-subspace and then initialize our cluster centroids in the
feature space based on the cluster membership in the PCA-subspace.
Although the resulting solution is not guaranteed to be the global
optimal solution, the resulting solution tends to be better (in terms of
within cluster variance) than the solutions obtained by just searching
within the full data space. Therefore, using the PCA-guided K-means
algorithm we intend to partition 𝑀 firms into 𝐾 clusters such that firms
in each cluster share similar credit rating transition behaviour.

3. Long-term credit rating model

We will be testing the performance of the model against three dif-
ferent classification scenarios, (1) the prediction of future credit rating,
(2) the prediction of the direction of future credit rating transitions,
and (3) the classification of risky firms most likely to default. For
each classification scenario we first split the entire data set into a
training set and a test set. The model is trained using the training set
and is evaluated based on its classification performance using the test
set. García, Marqués, and Sánchez (2015) highlights the importance
of experimental design in credit scoring and bankruptcy prediction.
They note that the choice of data splitting method is dependent on the
nature of the classifiers and complexity of the problem. In our study, we
found that the K-fold cross-validation method suited our goals well. We
forgo the use of the single holdout method as this results in our model
producing a single set of representative transition matrices. For similar
reasons, we forgo the use of leave-one-out cross-validation as the set
of representative transition matrices may remain relatively unchanged
by removing a single sequence matrix from the training set. By using
K-fold cross-validation we test the effectiveness of our model in the
case of a variety of different clusters and the predictive power of their
representative transition matrices. After clustering the training set we
generate the representative transition matrix 𝐏𝑘(𝛥𝑡) for each cluster.
This is done using the cohort approach.

For each scenario we let 𝐱𝑚(𝑇 ) be the credit rating sequence of the
th firm from the test set. For each firm 𝑚, we generate the sequence
atrix 𝐒𝑚 based on 𝐱𝑚(𝑇 ). The sequences matrices of the training set

re then partitioned into 𝐾 different clusters. Using the testing set, we
ssign a single firm to one of the 𝐾 clusters based on the Euclidean



Expert Systems With Applications 165 (2021) 113940R. Le et al.

w
t
u

𝐏

T

𝑋

F
c
n
o

e
t
t

𝑃

distance between 𝐒𝑚 and the clusters’ centroid 𝝁𝑘. That is, the assigned
cluster 𝑘∗ is chosen by

𝑘∗ = argmin𝑘 ‖‖𝐒𝑚 − 𝝁𝑘
‖

‖

. (9)

After assigning the firm to a cluster, we can estimate the future be-
haviour of the firm by using the cluster’s representative transition
matrix.

3.1. Credit rating and transition direction prediction

In the credit rating prediction scenario, we intend to determine the
most likely credit rating a firm will take at time 𝑡′ in the future given
the current credit rating 𝑋𝑡 at time 𝑡. We will consider 𝑛 class labels for
an 𝑛-state homogeneous Markov chain, i.e.  = {1, 2,… , 𝑛}. Let 𝜏 be the
difference 𝑡′ − 𝑡, then, using the representative transition matrix 𝐏𝑘(𝛥𝑡),

e calculate the 𝜏-step transition matrix 𝐏𝜏
𝑘(𝛥𝑡). Because we assume

ime-homogeneity, the 𝜏-step transition matrix can be calculated by
sing Eq. (7), that is

𝜏
𝑘(𝛥𝑡) = (𝐏𝑘(𝛥𝑡))(𝑡

′−𝑡). (10)

he prediction of the future credit rating �̂�𝑚
𝑡′ for some firm 𝑚 is then

̂ 𝑚
𝑡′ = argmax𝑗𝑃 𝜏

𝑘 (𝑋
𝑚
𝑡 , 𝑗). (11)

or the evaluation of multi-class classification performance we will be
onsidering the number of true positives (TP), false positives (FP), false
egatives (FN), and true negatives (TN). In the binary case we can
rganize these counts using a confusion matrix

Predicted class
Positive Negative

Actual class Positive TP FN
Negative FP TN

where our classes are the ‘‘Positive’’ and ‘‘Negative’’ classes. Given the
confusion matrix it can then be observed that the count of TP represent
the number of correct prediction of the positive class, FP represents the
number of incorrect predictions of the positive class, FN represents the
number of incorrect predictions of the negative class, and TN represents
the number of correct prediction for the negative class. For the multi-
class classification scenario with classes A, B, C, and D we can generate
the following confusion matrix.

Predicted class
A B C D

Actual class

A 𝑐1,1 𝑐1,2 𝑐1,3 𝑐1,4
B 𝑐2,1 𝑐2,2 𝑐2,3 𝑐2,4
C 𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4
D 𝑐4,1 𝑐4,2 𝑐4,3 𝑐4,4

Then, the number of TP, FP, FN, and TN can be calculated for
ach individual class in a similar manner to the binary example by
reating one of our classes as the positive class and everything else as
he negative. Generally, let  = {𝐿𝑙 ∣ 1 ≤ 𝑙 ≤ 𝐿} be the set of class

labels, then to calculate the number of TP, FP, FN, and TN for class
label 𝐿𝑙 ∈  we must consider the confusion matrix for classes ‘‘𝐿𝑙 ’’
and ‘‘Non-𝐿𝑙 ’’

Predicted class
𝐿𝑙 Non-𝐿𝑙

Actual class 𝐿𝑙 TP𝑙 FN𝑙
5

Non-𝐿𝑙 FP𝑙 TN𝑙
where each cell of the above confusion matrix can be calculated by the
following equations

TP𝑙 = 𝑐𝑙,𝑙 (12)

FP𝑙 =
𝐿
∑

𝑖=1
𝑐𝑖,𝑙 , for 𝑖 ≠ 𝑙 (13)

FN𝑙 =
𝐿
∑

𝑗=1
𝑐𝑙,𝑗 , for 𝑗 ≠ 𝑙 (14)

TN𝑙 =
𝐿
∑

𝑖=1

𝐿
∑

𝑗=1
𝑐𝑖,𝑗 − (TP𝑙 + FP𝑙 + FN𝑙). (15)

To evaluate the wellness of the estimates made in the multi-class
classification scenario we will be using the average accuracy, denoted
by 𝐴𝐴, and the micro-averaged 𝐹1-measure, denoted by 𝐹1𝜇 (Sokolova
& Lapalme, 2009).

𝐴𝐴 =

∑𝑛
𝑙=1

TP𝑙+TN𝑙
TP𝑙+FN𝑙+FP𝑙+TN𝑙

𝐿
(16)

𝐹1𝜇 = 2
𝑃𝑟𝜇 ⋅ 𝑅𝑒𝜇
𝑃𝑟𝜇 + 𝑅𝑒𝜇

(17)

where

𝑃𝑟𝜇 =
∑𝐿

𝑙=1 TP𝑙
∑𝐿

𝑙=1(TP𝑙 + FP𝑙)
(18)

𝑅𝑒𝜇 =
∑𝐿

𝑙=1 TP𝑙
∑𝐿

𝑙=1(TP𝑙 + FN𝑙)
(19)

where 𝑃𝑟𝜇 and 𝑅𝑒𝜇 are the micro-averaged precision and recall re-
spectively. It should also be noted that when using micro-averaging
for multi-class classification the micro-averaged recall, micro-average
precision, and micro-average 𝐹1-score are equal to each other. Micro-
averaging is used instead of macro-averaging (that is, averaging the
precision, recall, and 𝐹1 across the 𝐿 classes respectively) because
macro-averaging weights each class’s precision, recall, and 𝐹1-score
equally across the classes while micro-averaging takes into consider-
ation the size of each of the classes for the respective measure. This
prevents the smaller classes from over contributing in the averaging of
the 𝐹1-score (Sokolova & Lapalme, 2009).

When using K-fold cross-validation, a total confusion matrix is
calculated by summing up the K confusion matrices that were generated
at each fold. This total confusion matrix is then used to calculate
TP𝑙 , FP𝑙 , FN𝑙, and TN𝑙 as this is the most unbiased method in computing
the 𝐹1-measure when there is a high class imbalance (Forman & Scholz,
2010).

In the transition direction prediction scenario, we intend to de-
termine which direction a firm’s credit rating will move in by time
𝑡′ in the future, given the current credit rating 𝑋𝑚

𝑡 at time 𝑡. We
define this set of class labels as  = {−1, 0, 1} where -1, 0, and 1
represent the downgrade, stay, and upgrade classes respectively. Using
the representative transition matrix 𝐏𝑘(𝛥𝑡), we calculate the 𝜏-step
transition matrix 𝐏𝜏

𝑘(𝛥𝑡). The prediction of the direction that firm 𝑚’s
credit rating will change at time 𝑡′ is then estimated by 𝑑𝑚(𝑡, 𝑡′) where

𝑑𝑚(𝑡, 𝑡′) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑃𝑢 = max(𝑃𝑢, 𝑃 𝑠, 𝑃𝑑)
0 if 𝑃𝑠 = max(𝑃𝑢, 𝑃 𝑠, 𝑃𝑑)
−1 if 𝑃𝑑 = max(𝑃𝑢, 𝑃 𝑠, 𝑃𝑑)

(20)

where

𝑃𝑢 =
∑

𝑗<𝑋𝑚
𝑡

𝑃 𝜏
𝑘 (𝑋

𝑚
𝑡 , 𝑗)

𝑃𝑠 = 𝑃 𝜏
𝑘 (𝑋

𝑚
𝑡 , 𝑋

𝑚
𝑡 )

𝑑 =
∑

𝑚
𝑃 𝜏
𝑘 (𝑋

𝑚
𝑡 , 𝑗).
𝑋𝑡 <𝑗
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The predicted estimate of the change in the direction of the credit
rating 𝑑𝑚(𝑡, 𝑡′) is then compared to the true change in direction 𝑑𝑚(𝑡, 𝑡′),
alculated by

𝑚(𝑡, 𝑡′) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑋𝑚
𝑡′ < 𝑋𝑚

𝑡

0 if 𝑋𝑚
𝑡′ = 𝑋𝑚

𝑡

−1 if 𝑋𝑚
𝑡′ > 𝑋𝑚

𝑡 .

(21)

To evaluate the wellness of the estimates made using the test set, we
again calculate a total confusion matrix from the K-fold cross-validation
and calculate the average accuracy using Eq. (16) and micro-average
𝐹1-score using Eq. (17).

3.2. Prediction of default behaviour

In the default behaviour prediction scenario, we intend to determine
whether a firm will be in default within 𝜏 years based on their current
credit rating. We do so by checking the probability of default of a firm
against an appropriate threshold enabling the classification of the firm’s
default behaviour. That is, whether the firm will be in default or not
within 𝜏 years. The class labels that we will consider are binary. We
define the class label set as  = {1, 0} where 1 represent a firm having
defaulted within 𝜏 years and 0 for a firm not defaulting within 𝜏 years.

Using the representative transition matrix 𝐏𝑘(𝛥𝑡) of the 𝑘th cluster
we calculate the probability of defaulting within the next 𝜏 years. To
calculate the probability of default within 𝜏 time steps we first define
the following

Definition 3.2.1. Given state space  and 𝑛 = ||, let 𝐏𝑘(𝛥𝑡) be the
𝑛 × 𝑛 representative 𝛥𝑡-year transition matrix of cluster 𝑘. Then 𝐐𝑘 is
the (𝑛 − 1) × (𝑛 − 1) subsection of 𝐏𝑘(𝛥𝑡) containing entries 𝑃𝑘(𝑖, 𝑗) for
1 ≤ 𝑖, 𝑗 < 𝑛 and 𝐑𝑘 is a vector of size 𝑛−1 containing entries 𝑃𝑘(𝑖, 𝑗) for
1 ≤ 𝑖 < 𝑛 and 𝑗 = 𝑛.

Given the subsections 𝐐𝑘 and 𝐑𝑘 as defined above, we then denote
𝐫𝜏𝑘 as the (𝑛 − 1) × 1 vector whose entries are the probability of default
within 𝜏 years for a firm assigned to cluster 𝑘 and is calculated by

𝐫𝜏𝑘 = (𝐈 +𝐐𝑘 +𝐐2
𝑘 +⋯ +𝐐(𝜏−1)

𝑘 )𝐑𝐤 (22)

where 𝐈 is the identity matrix. The entries of 𝐫𝜏𝑘 are denoted by 𝑟𝜏𝑘(𝑖) for
1 ≤ 𝑖 < 𝑛. Given a firm 𝑚 that was assigned to cluster 𝑘, the probability
of default within 𝜏 years based on the firm’s current credit rating 𝑋𝑚

𝑡
is then 𝑟𝜏𝑘(𝑋

𝑚
𝑡 ). Once a firm has been assigned a probability of default,

we will refer to the associated probability as a ‘‘risk score’’. At every
step of the K-fold cross-validation process we assign all the firms in
each of the fold’s respective test set a risk score. By the Kth fold of the
cross-validation process, all of the firms in the data set will be assigned
a risk score.

To measure the quality of the classification of the firms’ default
state, we will assess our model based on two different evaluation
measures. The first evaluation is done using the measure Somers’ Delta
(Somers’ D). The measure Somers’ D is an asymmetric measure of
association between an independent (𝑥) and dependent variable (𝑦)
(Somers, 1962; Trueck & Rachev, 2009). Somers’ D measures this asso-
ciation between independent and dependent variables by considering
the number of concordant pairs, the number of discordant pairs, and
the number of tied pairs on the dependent variable.

Definition 3.2.2 (Somers’ D). Let 𝐶 be the number of concordant pairs,
𝐷 be the number of discordant pairs, and 𝑌0 be the number of tied pairs
on the dependent variable. A pair (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ) is concordant when
both 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 . A pair is discordant when 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 .
A pair is tied on the dependent variable when 𝑦𝑖 = 𝑦𝑗 . Somers’ D is then
calculated as

𝑑𝑦𝑥 = 𝐶 −𝐷
𝐶 +𝐷 + 𝑌0

(23)

so the value of 𝑑 ranges from −1 to 1.
6

𝑦𝑥 s
The operational interpretation of Somers’ D is the measure of the
proportionate excess of concordant over discordant pairs among the
number of pairs not tied on the independent variable. Somers’ D can be
applied in two types of applications (Newson, 2006). To measure the
effect of the independent variable on the dependent variable, treating
𝑑𝑦𝑥 as a measure of ‘‘effect size’’, or, to measure the performance of the
independent variable as a predictor of the dependent variable, treating
𝑑𝑦𝑥 as ‘‘predictor performance indicator’’. Given the context of credit
risk we let the estimated risk score be the independent variable and
the true default status (whether a firm has indeed defaulted within the
next 𝜏 time step) as the dependent variable.

The second evaluation is done by setting a threshold value 𝜃 and
then classifying a firm as being in default or not based on whether their
risk score exceeds the chosen threshold value. This comparison and
classification is done using threshold values from a discretized interval
ranging from 0 and 1. Hence, for each 𝜃 chosen, the 𝑚th firm can be
assigned a predicted default behaviour 𝑦𝑚 based on 𝑟𝜏𝑘(𝑋

𝑚
𝑡 )

𝑦𝑚 =

{

1 if 𝑟𝜏𝑘(𝑋
𝑚
𝑡 ) > 𝜃,

0 if 𝑟𝜏𝑘(𝑋
𝑚
𝑡 ) ≤ 𝜃.

(24)

A convenient way of displaying how the performance of a classification
model is by using a receiver operator characteristic (ROC) curve. A ROC
curve is a plot of the true positive rate, 𝑇𝑃𝑅 (also known as the recall)
against the false positive rate, 𝐹𝑃𝑅. To construct this curve we select
a threshold 𝜃, estimate 𝑦𝑚 using Eq. (24), generate a confusion matrix,
and then calculate the 𝐹𝑃𝑅 and 𝑇𝑃𝑅 by

𝐹𝑃𝑅 = FP
FP + TN (25)

and

𝑇𝑃𝑅 = 𝑅𝑒 = TP
TP + FN . (26)

his process is done for all thresholds from 0 to 1. At the same time
he precision and 𝐹1-score value can be calculated from the confusion
atrix at every threshold.

In practice, it is more useful to choose an optimal threshold or ‘‘cut-
ff’’ point for binary classification. By choosing a threshold we set the
ate for Type I and Type II errors. In the context of credit risk, a Type
error can result in opportunity costs and lost potential profits from

ost interest income, while a Type II error can result in the lost interest
nd principle through defaults (Trueck & Rachev, 2009). Liu (2002)
alculates the optimal threshold by taking the line tangent to the ROC
urve. This tangent line has a slope that is proportional to the ratio of
‘good’’ and ‘‘bad’’ cases, and inversely proportional to the cost ratio of
he Type I and Type II errors.

In general it is difficult to use costs to evaluate models as different
nstitution have different cost and pay-off structures and so, it would
e challenging to present a single cost function and provide a gen-
ral framework for optimal decision making of a financial institution
Trueck & Rachev, 2009). Instead, we will be using the methods de-
cribed in Sanchez (2016) to determine the optimal threshold in the
orst-case scenario for the purpose of model evaluation. By using game

heory and treating the classifier and ‘‘nature’’ as players, we choose the
ptimal threshold at the point where the ROC curve and the descending
iagonal line (i.e. the line 𝑇𝑃𝑅 = 1 − 𝐹𝑃𝑅) intersects.

. Data and experimental methods

In this section we describe the data and methods used in this study.
irst, we present the data, its characteristics, and how the data was
rocessed before classification. Next, we define the model parameters
nd present the algorithm used to evaluate the three classification
cenarios described in Section 3.
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Fig. 1. The frequency distribution of the 22 class credit ratings for the years 2002,
2007, 2012, 2017.

Table 1
The 7 aggregated classes.

New ratings Old ratings

AAA {AAA}
AA {AA+, AA, AA−}
A {A+, A, A−}
BBB {BBB+, BBB, BBB−}
BB {BB+, BB, BB−}
B {B+, B, B−, CCC+, CCC, CCC−}
C {CC, C, D}

4.1. Data

The data set we will be using was collected and provided by
National Information & Credit Evaluation Inc., a major bond-rating
company in Korea. The data set consisted of monthly corporate credit
ratings from 1986-09-01 to 2018-09-01 for 1899 firms in Korean in-
dices such as the KOSDAQ and KOSPI. Firms in this data set can take
any rating from the following set of 22 credit ratings

{AAA, AA+, AA, AA-, A+, A, A-, BBB+, BBB, BBB-,
BB+, BB, BB-, B+, B, B-, CCC+, CCC, CCC-, CC, C, D}.

The firms that take the ‘‘D’’ rating are considered to be in default.
Some firms were ‘‘closed’’ after some time and are considered to be
in default. Firms that were missing credit rating sequences, made for
sale, or was merged with another firm were removed from the data set.
After pruning the data set, there are 1648 firms remaining in the data
set. The distribution of the remaining 1648 firms’ credit rating classes
for selected dates can be found in Fig. 1.

From Fig. 1, it can be observed that there are very few samples in
credit class CCC+, CCC, CCC-, CC, and C for the selected dates. We
mitigate the negative effects of this imbalanced data set by combining
similar categories together reducing the number of credit rating classes
from 22 to 7 classes. Doing so will minimize the number of classes that
contain low instances of that minority class. The particular mapping of
old classes to new classes can be found in Table 1.

The distribution of the new aggregated classes can be found in
Fig. 2. By reducing the number of classes to 7 we diminish the degree
of imbalance that was present in the data set. Something to note is that
the distribution of credit ratings appear to change dramatically from
year to year. This is in part due to the fact that a number of firms were
not rated or did not exist at that time. For example, only 712 firms were
rated on 2002-01-01 where as 1617 firms were rated on 2017-01-01.
For the credit rating prediction and transition direction classification
7
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Fig. 2. The frequency distribution of the 7 class credit ratings for the years 2002,
2007, 2012, 2017.

Table 2
The number of valid firms used in the 5-fold cross-validation based on the input date

Input date Number of valid firms

2000-01-01 542
2001-01-01 590
2002-01-01 712
2003-01-01 752

Table 3
The class labels for each classification scenario.

Scenario Class label set ()

Credit rating prediction {1,2,3,4,5,6,7}
Transition direction {−1, 0, 1}
Default {1, 0}

scenarios, we will be using the relabelled credit rating sequences as
outlined in Table 1. For the default prediction classification scenario we
will move the old ratings CC and C to the new B rating group leaving
the last class to represent default by containing exclusively D ratings.

4.2. Experimental method

We treat the credit rating sequences as a Markov process with a
state space  = {1, 2, 3, 4, 5, 6, 7} with the numbers 1 representing the
least risky credit class AAA and 7 representing the most risky credit
class C. The total number of clusters 𝐾 was set to 15.

For each classification scenario, we set the input date 𝑡 ∈ {2000, 2001,
2002, 2003}. The input date represents the initial point in time we will
begin making our prediction from. For quarterly transition matrices
we set 𝛥𝑡 to be 0.25. The predictions will be made 𝜏 years into the
uture where 𝜏 ∈ {5, 10, 15}. Credit rating sequences with fewer than

years of credit rating data will not be used and excluded from the
nalysis. Therefore, of the remaining 1648 firms number of valid firms
as reduced to the amounts indicated in Table 2. Each firm is assigned
sequence matrix 𝐒𝑚 based on its credit rating sequence 𝐱𝑚(𝑇 ) as

escribed in Section 2.1. Using 5-fold cross-validation we split the
umber of valid firms into two groups, a training set, and test set. 15
lusters are then generated based off the training set using PCA-guided
-means. A representative 𝛥𝑡-transition matrix 𝐏𝑘(𝛥𝑡) was estimated for
ach cluster where 𝛥𝑡 = 0.25. The transition matrices are generated
s described in Section 2.2. Given 𝐏𝑘(𝛥𝑡) we can then calculate 𝐏𝜏

𝑘(𝛥𝑡)
here 𝜏 ∈ {5, 10, 15} using Eq. (10).

Each firm from the test set is then assigned to a cluster and assigned
predicted class from a class label set based on the classification
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Table 4
Results from the credit rating prediction scenario. Results under the column label (C) and (B) represent the results from clustering and the
benchmark model respectively.
𝜏 Input date Predicted date (C) 𝐴𝐴 (B) 𝐴𝐴 (C) 𝐹1𝜇 (B) 𝐹1𝜇

15

2000-01-01 2015-01-01 0.8993 (0.0036) 0.8585 (0.0027) 0.6475 (0.0126) 0.5047 (0.0095)
2001-01-01 2016-01-01 0.9013 (0.0033) 0.8705 (0.0011) 0.6546 (0.0115) 0.5467 (0.0038)
2002-01-01 2017-01-01 0.9148 (0.0028) 0.8712 (0.0020) 0.7018 (0.0097) 0.5491 (0.0070)
2003-01-01 2018-01-01 0.9178 (0.0026) 0.8816 (0.0016) 0.7125 (0.0090) 0.5855 (0.0058)

10

2000-01-01 2010-01-01 0.9012 (0.0029) 0.8751 (0.0001) 0.6542 (0.0102) 0.5627 (0.0004)
2001-01-01 2011-01-01 0.9039 (0.0026) 0.8833 (0.0001) 0.6636 (0.0092) 0.5915 (0.0003)
2002-01-01 2012-01-01 0.9126 (0.0021) 0.8748 (0.0002) 0.6942 (0.0075) 0.5617 (0.0007)
2003-01-01 2013-01-01 0.9202 (0.0022) 0.8860 (0.0003) 0.7205 (0.0076) 0.6009 (0.0011)

5

2000-01-01 2005-01-01 0.9207 (0.0024) 0.9135 (0.0001) 0.7225 (0.0084) 0.6974 (0.0003)
2001-01-01 2006-01-01 0.9183 (0.0023) 0.9138 (0.0000) 0.7140 (0.0081) 0.6983 (0.0000)
2002-01-01 2007-01-01 0.9244 (0.0021) 0.9097 (0.0000) 0.7355 (0.0075) 0.6840 (0.0000)
2003-01-01 2008-01-01 0.9264 (0.0018) 0.9179 (0.0000) 0.7425 (0.0062) 0.7128 (0.0000)
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scenario as shown in Table 3. This process is done for all the test sets
at each fold. The result is that each valid firm is assigned to a predicted
class by the end of the 5-fold cross-validation process. The effectiveness
of our clustering model against the benchmark model will be based
on the performance measures described in Section 3. The benchmark
model uses a single representative transition matrix 𝐏(𝛥𝑡) estimated
from all of the credit rating sequences, in the absence of clustering.
This single transition matrix is then used for classification purposes. The
results in Section 5 were calculated by averaging 1000 shuffled 5-fold
cross-validation results.

The algorithm used in the different classification scenarios can be
grouped into 2 main algorithms. For the credit rating prediction and
transition direction prediction classification scenarios:

1. Initialize the number of clusters 𝐾,  = {1, 2, 3, 4, 5, 6, 7}, 𝑛 = ||,
𝑡, 𝛥𝑡, and 𝜏. Under the credit rating prediction scenario set the
class label set as  = {1, 2, 3, 4, 5, 6, 7}. Under the transition
direction prediction scenario set the class label set as  =
{−1, 0, 1}.

2. From the data set of credit rating sequences, generate each firm’s
corresponding sequence matrices.

3. Begin 5-fold cross-validation process and split the data set into
a training and test set:

(a) Cluster in PCA subspace.
(b) Set initial centroids based on cluster membership from

clustering in the PCA subspace.
(c) Cluster in full data space.
(d) Generate the representative transition matrices 𝐏𝑘(𝛥𝑡) for

each cluster.
(e) For all firms in the test set, assign to a cluster based on

the firm’s 𝐒𝑚.
(f) Under the credit rating prediction scenario, estimate the

future credit rating �̂�𝑚
𝑡′ based on 𝐏𝜏

𝑘(𝛥𝑡). Under the tran-
sition direction prediction scenario, find 𝑑𝑚(𝑡, 𝑡′) based on
𝐏𝜏
𝑘(𝛥𝑡).

(g) Repeat step 3 for all 5 folds.

4. Generate a confusion matrix based on the predicted and actual
classes.

5. Evaluate the performance based on Section 3.1. End.

The algorithm for the default prediction scenario is as follows:

1. Initialize the number of clusters 𝐾,  = {1, 2, 3, 4, 5, 6, 7}, 𝑛 = ||,
𝑡, 𝛥𝑡, and 𝜏. Set the class label set as  = {1, 0}.

2. From the data set of credit rating sequences, generate each firm’s
corresponding sequence matrices.

3. Begin 5-fold cross-validation process and split the data set into
a training and test set:
8

(a) Cluster in PCA subspace.
(b) Set initial centroids based on cluster membership from

clustering in the PCA subspace.
(c) Cluster in full data space.
(d) Generate the representative transition matrices 𝐏𝑘(𝛥𝑡) for

each cluster.
(e) Use Definition 3.2.1 to generate the default probabilities

𝐫𝜏𝑘 for each cluster based on 𝐏𝑘(𝛥𝑡).
(f) For all firms in the test set, assign to a cluster based on

the firm’s 𝐒𝑚.
(g) Based on the current rating of test set firms at time 𝑡, use

the calculated 𝐫𝜏𝑘 to assign a risk score 𝑟𝜏𝑘(𝑋
𝑚
𝑡 ) to every

test firm.
(h) Repeat step 3 for all 5 folds.

4. Proceed to steps 5 to calculate the Somers’ D or step 6 to predict
default behaviour.

5. Estimate 𝑑𝑦𝑥 for every firm. End.
6. Compare the threshold and the risk scores to estimate the default

behaviour, 𝑦𝑚.
7. Generate a confusion matrix based on the predicted and actual

classes.
8. Evaluate the performance based on Sections Section 3.2. End.

. Results and discussions

The brackets beside the performance measures in the following
ables are the standard deviation of the respective measures. The
ow standard deviation for the benchmark model is the result of the
iagonally dominant matrices produced by the benchmark model. From
able 4, the clustering model appears to outperform the benchmark
odel in terms of both the 𝐴𝐴 and the 𝐹1𝜇-measure in the credit

ating prediction scenario. Predictions were made using representative
ransition matrices where 𝜏 ∈ {5, 10, 15}. Due to the imbalanced nature

of the data set, the significance of the micro-averaged 𝐹1-measure
should have higher precedence over the averaged accuracy. It is a more
accurate representation of the model’s performance as it takes into
account the size of the individual classes in .

Similar to the credit rating prediction scenario, the results in Table 5
show that the clustering model outperforms the benchmark model.
This is observed for both the 𝐴𝐴 and the 𝐹1𝜇-measure when making
redictions using representative transition matrices with 𝜏 ∈ {5, 10, 15}.

The main diagonal of the transition matrices estimated from credit
atings tend to be diagonally dominant (Jafry & Schuermann, 2004).
he main diagonal represents the probability that a firm maintains

ts current credit rating after a transition period. This observation can
e commonly found in the benchmark model as it aggregates all of
he training data before estimating the transition matrix. Because the
ransition matrix is used during the classification process, a consistently
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Table 5
Results from the transition direction prediction scenario. Results under the column label (C) and (B) represent the results from clustering and
the benchmark model respectively.
𝜏 Input date Predicted date (C) 𝐴𝐴 (B) 𝐴𝐴 (C) 𝐹1𝜇 (B) 𝐹1𝜇

15

2000-01-01 2015-01-01 0.7992 (0.0089) 0.5671 (0.0053) 0.6987 (0.0133) 0.3506 (0.0080)
2001-01-01 2016-01-01 0.8041 (0.0089) 0.5769 (0.0077) 0.7062 (0.0134) 0.3654 (0.0115)
2002-01-01 2017-01-01 0.8293 (0.0084) 0.5746 (0.0044) 0.7440 (0.0125) 0.3619 (0.0066)
2003-01-01 2018-01-01 0.8330 (0.0077) 0.5899 (0.0054) 0.7495 (0.0116) 0.3848 (0.0081)

10

2000-01-01 2010-01-01 0.7945 (0.0076) 0.6371 (0.0040) 0.6917 (0.0114) 0.4557 (0.0060)
2001-01-01 2011-01-01 0.7962 (0.0065) 0.6647 (0.0078) 0.6943 (0.0097) 0.4970 (0.0116)
2002-01-01 2012-01-01 0.8152 (0.0065) 0.6543 (0.0054) 0.7228 (0.0097) 0.4814 (0.0080)
2003-01-01 2013-01-01 0.8270 (0.0066) 0.6772 (0.0059) 0.7406 (0.0099) 0.5158 (0.0088)

5

2000-01-01 2005-01-01 0.8246 (0.0060) 0.7983 (0.0000) 0.7370 (0.0091) 0.6974 (0.0000)
2001-01-01 2006-01-01 0.8189 (0.0063) 0.7989 (0.0002) 0.7284 (0.0095) 0.6983 (0.0003)
2002-01-01 2007-01-01 0.8338 (0.0052) 0.7893 (0.0000) 0.7507 (0.0079) 0.6840 (0.0000)
2003-01-01 2008-01-01 0.8330 (0.0046) 0.8085 (0.0000) 0.7495 (0.0069) 0.7128 (0.0000)
Fig. 3. The results from the credit rating, rating transition direction, and default prediction scenarios. The labels (C) and (B) represent the clustering and benchmark models
respectively.
Table 6
Results of the Somers’ D for the default behaviour prediction scenario. Results under
the column label (C) and (B) represent the results from clustering and the benchmark
model respectively.
𝜏 Input date Predicted date (C) 𝑑𝑦𝑥 (B) 𝑑𝑦𝑥

15

2000-01-01 2015-01-01 0.2836 (0.0210) 0.1859 (0.0031)
2001-01-01 2016-01-01 0.2850 (0.0196) 0.1918 (0.0029)
2002-01-01 2017-01-01 0.3470 (0.0194) 0.2137 (0.0028)
2003-01-01 2018-01-01 0.3506 (0.0191) 0.2263 (0.0023)

10

2000-01-01 2010-01-01 0.2649 (0.0188) 0.1863 (0.0028)
2001-01-01 2011-01-01 0.2658 (0.0175) 0.1943 (0.0026)
2002-01-01 2012-01-01 0.3206 (0.0181) 0.2051 (0.0028)
2003-01-01 2013-01-01 0.3392 (0.0184) 0.2223 (0.0023)

5

2000-01-01 2005-01-01 0.2374 (0.0165) 0.1724 (0.0026)
2001-01-01 2006-01-01 0.2353 (0.0150) 0.1792 (0.0022)
2002-01-01 2007-01-01 0.2790 (0.0144) 0.2017 (0.0024)
2003-01-01 2008-01-01 0.2855 (0.0147) 0.2058 (0.0019)

diagonally dominated transition matrix leads to similar predictions
across the 1000 runs. Although the clustering model uses the same
methods in generating the transition matrices, the results are more ac-
curate. The difference is that the clustering model partition firms with
similar transition behaviours together and generates a representative
transition matrix from this collection of firms. In other words, it can
be said that the representative transition matrices of each cluster is
custom-tailored to the distinct behaviour of each group of firms. Hence,
the predictions are made on a test firm using a representative transition
matrix that best characterizes it.
9

Judging from the values in Table 6, both the clustering and bench-
mark models demonstrate some ability in producing risk scores that
function well as a predictor of the dependent variable (the default
behaviour of the firms) as both models produce 𝑑𝑦𝑥 > 0. However,
despite both models performing well, it can be observed that the
clustering model outperform the benchmark model by producing ‘‘more
effective’’ risk scores.

From Table 7, it can be observed that the clustering model out-
performs the benchmark model in all performance measures. Treating
the false positive rate 𝐹𝑃𝑅 as a measure on the Type I error and the
false negative rate as a measure of the Type II error, we find that the
clustering model has an overall lower proportion of FP and FN.

Plotting the 𝐹1𝜇 and 𝐴𝐴 while varying the value of 𝜏 we can deter-
mine the effectiveness of each model for different prediction horizons.
For practical purposes we used 𝜏 ∈ [1, 15], that is, prediction horizons
ranging from one to fifteen years into the future. The transparent area
in the plots of Fig. 3, represent the standard deviation of the respective
results of each classification scenario. From Fig. 3 it is obvious that the
clustering model outperforms the benchmark model for the majority of
the tested 𝜏 values in terms of both 𝐴𝐴 and 𝐹1𝜇 for all classification
scenarios. As we vary 𝜏 there are two observations that can be made.
The first observation: For decreasing values of 𝜏 the degree by which
the clustering model outperform the benchmark model also decreases.
It is common for firms to maintain their current rating across shorter
time periods, increasing the performance of the benchmark model as
𝜏 decreases. With longer time periods, firms are more likely to change
ratings, and so the resulting benchmark transition matrix from Eq. (10)
with large 𝜏 does a poor job in catching all the different behaviours of
every firm. The second observation: For increasing values of 𝜏, both the
clustering and benchmark model performance decrease for the credit
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Table 7
Results using the worst-case scenario thresholds for the default behaviour prediction scenario. Results under the column label (C) and (B) represent the results from clustering and
the benchmark model respectively.
𝜏 Input date (C) Re (B) Re (C) Pr (B) Pr (C) 𝐹1𝜇 (B) 𝐹1𝜇

15

2000-01-01 0.9102 (0.0269) 0.7408 (0.0460) 0.6583 (0.0873) 0.3445 (0.0230) 0.7608 (0.0613) 0.4681 (0.0170)
2001-01-01 0.9179 (0.0225) 0.7486 (0.0421) 0.6812 (0.0937) 0.3526 (0.0261) 0.7783 (0.0633) 0.4774 (0.0188)
2002-01-01 0.9378 (0.0131) 0.7325 (0.0519) 0.7856 (0.0793) 0.3941 (0.0272) 0.8528 (0.0484) 0.5087 (0.0150)
2003-01-01 0.9420 (0.0133) 0.7628 (0.0354) 0.7953 (0.0763) 0.4283 (0.0354) 0.8605 (0.0464) 0.5465 (0.0222)

10

2000-01-01 0.9275 (0.0283) 0.7655 (0.0410) 0.6839 (0.0836) 0.3487 (0.0281) 0.7841 (0.0594) 0.4767 (0.0220)
2001-01-01 0.9412 (0.0212) 0.7836 (0.0388) 0.7289 (0.0843) 0.3742 (0.0382) 0.8186 (0.0564) 0.5027 (0.0284)
2002-01-01 0.9425 (0.0129) 0.7428 (0.0501) 0.7777 (0.0634) 0.3876 (0.0342) 0.8508 (0.0398) 0.5014 (0.0189)
2003-01-01 0.9415 (0.0129) 0.7685 (0.0332) 0.7853 (0.0690) 0.4358 (0.0389) 0.8546 (0.0428) 0.5492 (0.0232)

5

2000-01-01 0.9411 (0.0309) 0.7833 (0.0340) 0.6864 (0.0554) 0.3351 (0.0383) 0.7923 (0.0421) 0.4658 (0.0324)
2001-01-01 0.9595 (0.0237) 0.8111 (0.0303) 0.7565 (0.0275) 0.3731 (0.0555) 0.8456 (0.0200) 0.5058 (0.0450)
2002-01-01 0.9619 (0.0211) 0.7838 (0.0393) 0.8033 (0.0119) 0.3958 (0.0345) 0.8753 (0.0109) 0.5132 (0.0251)
2003-01-01 0.9598 (0.0100) 0.8088 (0.0220) 0.7985 (0.0119) 0.4380 (0.0313) 0.8717 (0.0080) 0.5583 (0.0246)
Table 8
The confusion matrices using input date 2001-01-01 under the credit rating prediction scenario.

(a) The clustering model using 𝜏 = 15. (b) The benchmark model using 𝜏 = 15.

Predicted class Predicted class

AAA AA A BBB BB B C AAA AA A BBB BB B C

Actual class

AAA 19.3 6.7 0.0 0.0 0.0 0.0 0.0

Actual class

AAA 15.0 7.0 4.0 0.0 0.0 0.0 0.0
AA 4.1 44.0 8.9 23.7 3.2 0.0 2.0 AA 1.0 26.7 26.2 23.1 7.0 0.0 2.0
A 0.2 8.9 55.8 35.5 14.9 0.8 3.8 A 0.0 5.0 45.8 47.2 18.0 0.0 4.0
BBB 0.0 0.1 13.9 100.5 13.8 1.0 9.6 BBB 0.0 1.0 6.0 99.0 24.0 0.0 9.0
BB 0.0 0.1 3.3 18.3 69.5 6.9 1.8 BB 0.0 0.0 2.0 12.0 83.0 0.0 3.0
B 0.0 0.0 1.0 3.5 4.3 14.3 9.0 B 0.0 0.0 0.0 7.0 11.0 0.0 14.0
C 0.6 0.4 0.6 1.7 0.9 0.4 82.4 C 0.0 1.0 2.0 8.0 23.0 0.0 53.0

(c) The clustering model using 𝜏 = 5. (d) The benchmark model using 𝜏 = 5.

Predicted class Predicted class

AAA AA A BBB BB B C AAA AA A BBB BB B C

Actual class

AAA 16.5 4.3 0.2 0.0 0.0 0.0 0.0

Actual class

AAA 16.0 4.0 1.0 0.0 0.0 0.0 0.0
AA 1.3 35.3 8.3 1.7 0.0 0.0 0.3 AA 0.0 31.0 14.0 2.0 0.0 0.0 0.0
A 0.0 7.7 64.2 40.0 5.7 1.0 3.3 A 0.0 4.0 65.0 43.0 6.0 1.0 3.0
BBB 0.0 1.0 7.7 124.0 32.4 0.4 7.5 BBB 0.0 1.0 4.0 132.0 31.0 3.0 2.0
BB 0.0 0.9 1.4 10.4 96.8 1.4 7.1 BB 0.0 1.0 2.0 11.0 103.0 0.0 1.0
B 0.0 0.0 0.1 2.4 8.6 11.9 6.9 B 0.0 0.0 0.0 4.0 11.0 15.0 0.0
C 0.0 0.0 0.0 2.4 0.8 3.3 72.4 C 0.0 0.0 0.0 4.0 15.0 10.0 50.0
Table 9
The confusion matrices using input date 2001-01-01 under the transition direction prediction scenario.

(a) The clustering model using 𝜏 = 15. (b) The benchmark model using 𝜏 = 15.

Predicted class Predicted class

−1 0 1 −1 0 1

Actual class
−1 65.1 21.9 4.0

Actual class
−1 39.6 38.0 13.4

0 16.0 261.7 43.3 0 127.7 160.7 32.6
1 11.4 76.8 89.9 1 61.8 100.8 15.4

(c) The clustering model using 𝜏 = 5. (d) The benchmark model using 𝜏 = 5.

Predicted class Predicted class

−1 0 1 −1 0 1

Actual class
−1 34.4 32.3 0.3

Actual class
−1 0.0 67.0 0.0

0 17.6 380.5 13.9 0 0.0 412.0 0.0
1 3.6 92.4 15.1 1 0.0 111.0 0.0
rating prediction and transition direction prediction scenarios. The
rate at which the performance deteriorates, however, is higher in the
benchmark model. The clustering model’s performance decreases but
10

then levels out eventually for 𝜏 ∈ [1, 15] in all classification scenarios.
In the default prediction scenario the clustering model performance
actually increases while the benchmark model performance decreases
with increasing values of 𝜏. It can be stated that the clustering model’s

performance is more consistent over 𝜏 ∈ [1, 15]. The confusion matrices
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b

Table 10
The confusion matrices using input date 2001-01-01 under the default behaviour prediction scenario.

(a) The clustering model using 𝜏 = 15. (b) The benchmark model using 𝜏 = 15.

Predicted class Predicted class

1 0 1 0

Actual class 1 82.7 7.3 Actual class 1 68.0 22.0
0 40.3 459.7 0 128.6 371.4

(c) The clustering model using 𝜏 = 5. (d) The benchmark model using 𝜏 = 5.

Predicted class Predicted class

1 0 1 0

Actual class 1 65.0 3.0 Actual class 1 54.4 13.6
0 22.6 499.4 0 90.8 431.2
Fig. 4. The 𝐹1-measure for each credit rating under the three classification scenarios. The left (blue) and right (orange) bar graphs are the results using the clustering and
enchmark models respectively.
11



Expert Systems With Applications 165 (2021) 113940R. Le et al.

f
t
g

A

A

R

C

C

D

D

F

G

G

G

I

J

J

J

K

K

L

L

M

of each classification scenario and a breakdown of the performance of
the model across each credit rating in terms of the 𝐹1 is presented
in Appendix A and Appendix B, repsectively.

6. Conclusions

The changes in the credit rating of a firm can have a substantial im-
pact on bond pricing, valuation of credit derivatives, and management
decisions of companies. In this paper, we adapted the sequence-based
clustering technique used in web-usage mining to improve transition
matrix estimation methods in the context of credit risk. The clustering
algorithm used was the PCA-guided K-means algorithm and the analysis
is in part possible due to the convenient cluster-ready representa-
tion of sequence matrices. Some properties of sequence matrices were
presented which can prove to be beneficial for future development
and implementation in models that intend to utilize this sequence
matrix representation. Credit rating prediction, credit rating transition
direction prediction, and default behaviour prediction were the three
classification scenarios that were used to test the performance of the
clustering model.

The clustering model was compared against the benchmark model
where clustering was absent. The results suggest that by clustering
the sequence matrices of firms, the overall predictive power of the
representative transition matrices is greater than just using a single
transition matrix. The performance of the models in the credit rating
prediction and transition direction prediction classification scenarios
were evaluated in terms of the average accuracy and micro-averaged
𝐹1-score. The performance of the models in the default behaviour
prediction classification scenario were evaluated in terms of the recall,
precision, and 𝐹1𝜇-score. The worst-case scenario threshold provides a
suitable means of evaluating our model against the benchmark model.

The following are some potential extensions of our work. The
clustering algorithm used the Euclidean distance measure to distin-
guish similarity between different sequence matrices of firms. One can
develop and incorporate a distance measure that considers transition
risks. In the context of credit risk, the Euclidean distance measure is
not able to distinguish clusters by their ‘‘riskiness’’. Another extension
could include using more sophisticated models making use of other
features of financial companies after clustering based off their sequence
matrices. One can also attempt to address the issue that in reality, a
time-homogeneous Markov chain does not fully model credit rating
sequences. This can be addressed by incorporating features into the
model that take into account the non-Markovian effects of credit ratings
such as rating drift.
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Appendices

The following section contains supplementary information to im-
prove understanding of the results presented in this paper. In Ap-
pendix A, we present the confusion matrices for each classification
scenario to highlight the sample size and balance of the classes. In
Appendix B, we present the performance of the clustering model against
the benchmark model across each credit rating using the 𝐹1-score
or each classification scenario. The input date used for the results in
he following section was set to 2001-01-01. The following results are
enerated by averaging over 1000 5-fold cross-validation runs.

ppendix A. Confusion matrices

See Tables 8–10.

ppendix B. Performance measures by credit rating

See Fig. 4.
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